Annual Conference on Human and Language Technology
/
2017.10a
/
pp.51-55
/
2017
대규모 분류체계를 사용하는 경우, 기존 방법의 딥 러닝으로는 분류 정확도가 현저히 떨어진다. 이를 해결하기 위해 계층 구조를 활용한 네거티브 샘플링 방법을 제안한다. 학습 문서가 속한 카테고리의 상위 카테고리와 일정부분 겹치는 범위에서 네거티브 샘플을 선택하면, 하나의 큰 문제를 다수개의 하위 문제로 쪼개서 해결하는 학습 효과가 있다. 소규모 분류 체계와 대규모 분류체계 각각에서 샘플링 전략을 차용하였을 때를 비교한 결과, 대규모에서 효과가 좋았으며 그 때의 정확도가 150배 이상 차이가 나는 것을 보였다.
대규모 분류체계를 사용하는 경우, 기존 방법의 딥 러닝으로는 분류 정확도가 현저히 떨어진다. 이를 해결하기 위해 계층 구조를 활용한 네거티브 샘플링 방법을 제안한다. 학습 문서가 속한 카테고리의 상위 카테고리와 일정부분 겹치는 범위에서 네거티브 샘플을 선택하면, 하나의 큰 문제를 다수개의 하위 문제로 쪼개서 해결하는 학습 효과가 있다. 소규모 분류 체계와 대규모 분류체계 각각에서 샘플링 전략을 차용하였을 때를 비교한 결과, 대규모에서 효과가 좋았으며 그 때의 정확도가 150배 이상 차이가 나는 것을 보였다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.79-80
/
2023
본 연구에서는 자율운항선박이 복잡한 항계 내에서 다양한 해상 객체와의 충돌을 회피하기 위하여 계층적 경로 생성 기법을 연계하는 프레임워크를 제안한다. 항계 내에는 항로를 항행하는 선박 외에도 정박 영역 내 정박 또는 묘박 중인 선박뿐만 아니라 항로 표지나 부표와 같은 정적 객체들이 다양하게 분포되어 있다. 자율운항선박의 효율적 운항을 위해서는 운항 중에 조우하게 되는 객체의 정적/동적 속성에 따라 경로 생성 기법이 달리 적용되어야 한다. 본 연구에서 제안한 경로 생성 프레임워크는 항계 내의 정적 객체나 항행 가항 영역 및 항행 불가항 영역 등에 대한 위치 정보들은 사전적 정보로 활용 가능하므로, 샘플링 기반의 전역 경로 생성 기법을 적용하여, 초기 출발지에서 최종 목적지까지의 예상 경로를 생성한다. 그리고 생성된 전역 경로를 추종하며 운항하는 과정에서 조우하게 되는 동적 객체들과의 조우 상황별 국제해상 충돌예방규칙(COLREGs)을 고려한 지역 경로를 생성한다. 샘플링 기반의 전역 경로와 국소 영역에서의 충돌 회피를 위한 지역 경로를 연계하기 위한 계층적 경로 생성 프레임워크를 설계하고, 수치 시뮬레이션을 통해 제안한 프레임워크의 유용성을 검증하였다.
To achieve flexible visual content adaption for multimedia communications, the ISO/IEC MPEG & ITU-T VCEG form the JVT to develop SVC amendment for the H.264/AVC standard. JVT uses inter-layer prediction as well as inter prediction and intra prediction that are provided in H.264/AVC to remove the redundancy among layers. The main goal consists of designing inter-layer prediction tools that enable the usage of as much as possible base layer information to improve the rate-distortion efficiency of the enhancement layer. But inter layer prediction causes the computational complexity to be increased. In this paper, we proposed an efficient residual prediction. In order to reduce the computational complexity while maintaining the high coding efficiency. The proposed residual prediction uses modified interpolation that is defined in H.264/AVC SVC.
Kim, Seoung-Hwi;Lee, Dongkyu;Chae, Chan-Yup;Sim, Donggyu;Kang, Jung-Won;Oh, Seoung-Jun
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.11a
/
pp.110-113
/
2015
SHVC(Scalable High efficiency Video Coding)는 다양한 멀티미디어 서비스 환경에서 높은 코딩 효율을 위해 공간적, 시간적, 화질적 스케일러빌리티를 이용한 표준 기술이다. SHVC는 멀티-계층 부/복호화를 수행하기 때문에 싱글-계층인 HEVC(High Efficiency Video Coding) 보다 추가적인 복잡도를 요구한다. 본 논문에서는 SHVC 복호화기의 복잡도를 분석하고 SHVC 복호화기에서 높은 복잡도를 차지하는 프레임 기반 업샘플링을 PU 기반 On-the-fly 업샘플링(On-the-fly Up-sampling) 방법과 SIMD 연산을 통해 고속화 한다. 제안하는 알고리즘이 적용된 SHVC 복호화기는 기존 SHVC 복호화기의 복호화 시간보다 평균 1.23배 고속화 성능을 보이며 업샘플링의 복잡도가 24.7%에서 1.9%로 감소하였다. On-the-fly 업샘플링 과정은 기존 프레임 레벨 업샘플링 과정 대비 평균 90.3% 수행시간 감소율을 보인다.
본 논문에서는 동영상의 계층적 부호화의 효율을 높이기 위한 방안에 대해 연구하였다. 단일 계층부호화에 비해 다 계층부호화는 계산량이 많아진다. 따라서 계층적 부호화의 장점을 살리고 단점을 보완하는 방안을 제시하였다. 우선 인코더에서 고급계층의 복잡도를 줄이기 위하여 고급계층의 참조 형태를 P-VOP (Prediction-Video Object Plane)만으로 정한다. 고급계층의 참조 영역으로 사용되는 업샘플링된 VOP의 횟수를 줄여서 업샘플링에 따른 계산량을 줄인다. 그리고 고급계층의 비트율을 조절하여 Traffic shaping 효과도 얻을 수 있다. 이러한 방법들을 통해 단일 계층 부호화에 비해 다 계층부호화의 장점을 살리고 단점을 보완하는 코덱을 제안한다.
The standard volume ray-tracing, optimized with octree, needs to repeatedly traverse hierarchical structures for each ray that often leads to redundant computations. It also employs the expensive 3D interpolation for producing high quality images. In this paper, we present a new ray-casting method that efficiently computes shaded colors and opacities at resampling points by traversing octree only once. This method traverses volume data in object-order, finds resampling points on slices incrementally, and performs resampling based on 2D interpolation. While the early ray-termination, which is one of the most effective optimization techniques, is not easily combined with object-order methods, we solved this problem using a dynamic data structure in image space. Considering that our new method is easy to implement, and need little additional memory, it will be used as very effective volume method that fills the performance gap between ray-casting and shear-warping.
The present study used a hierarchical Bayesian approach was used to develop a mixed effect model to describe the transitional behavior of subjects in time nonhomogeneous Markov chains. The posterior distributions of model parameters were not in analytically tractable forms; subsequently, a Gibbs sampling method was used to draw samples from full conditional posterior distributions. The proposed model was implemented with real data.
Scalable extension of High Efficiency Video Coding (SHVC) standard uses the up-sampled residual data from the base layer to make a residual data in the enhancement layer. This paper describes an efficient algorithm for improving coding gain by using the filtered residual signal of base layer in the Scalable extension of High Efficiency Video Coding (SHVC). The proposed adaptive filter selection mechanism uses the smoothing and sharpening filters to enhance the quality of inter-layer prediction. Based on two filters and the existing up-sampling filter, a rate-distortion (RD)-cost fuction-based competitive scheme is proposed to get better quality of video. Experimental results showed that average BD-rate gains of 1.5%, 2.1%, and 1.7% for Y, U and V components, respectively, were achieved, compared with SHVC reference software 5.0, which is based on HEVC reference model (HM) 13.
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.43-46
/
2006
본 논문에서는 호프변환을 이용한 실시간 수신호 인식시스템에서 대상영역 분할의 오차와 추출된 특징의 위치 변화등의 영향을 개선하는 방법론을 제안한다. 원형호프변환을 기반으로 생성한 특징정보로부터 CNN(Convolution Neural Network) 모델의 계층적 구조를 통하여 단계적으로 일련의 특징지도가 추출된다. CNN 모델에서 샘플링 계층의 연결구조는 특징의 위치 변화에 강인한 추출기능을 지원하며, 상위계층에서 보다 함축적인 특징지도를 생성하게 된다. 원형 호프 변환은 손의 형태학적 주요 포인트를 효과적으로 추출할 수 있게 하고 또한 입력 영상의 회전으로 인한 제약을 극복할 수 있게 한다. 본 연구에서는 제안된 이론을 TV 원격 제어를 위한 수신호 인터페이스 시스템을 대상으로 적용함으로써 그 유용성을 고찰한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.