In this paper, we consider the comparisons of the personal preferences of analytic hierarchy process (AHP) and conjoint analysis (CA) which contain very relatively small number of alternatives. However, a direct performance comparison is not easy because these two methods have a much different process to achieve the final decision. Therefore, we adopt a validity and reference method with empirical case study for cosmetics preference of female college students. In case study, conjoint analysis has the merit of measuring internal validity; however, AHP has the merit of measuring predictive validity.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.952-955
/
2014
본 논문에서는 정보 검색 분야에서 잘 알려진 잠재 의미 분석 방법과 계층적 군집화 방법의 단점을 상호 보완하여 보다 효율적인 정보 검색을 위한 혼합형 군집화 방법을 제안한다. 먼저, 잠재 의미 분석 방법은 벡터 연산을 통하여 자동적으로 문서 내에 있는 잠재적인 의미를 찾는 정보 검색분야에서 많이 사용되는 고전적인 방법이다. 그러나 이 방법은 언어의 유의성이나 다의성으로 인하여 발생되는 백-오브-워드(bag-of-word) 문제를 가지고 있다. 두 번째 방법인 문서 군집화를 위하여 범용적으로 사용되고 있는 계층적 군집화 방법이다. 이 방법은 이를 통하여 분석된 군집의 질적 측면에서 볼 때, 여전히 단층적 군집들이 많이 형성되어 세부적인 분석을 통한 추가적인 군집화가 필요함을 알 수 있다. 따라서, 본 논문에서는 앞서 언급한 문제점을 해결하기 위하여 혼합적인 방법으로 잠재 의미 분석 방법을 이용한 응집 계층 군집화 방법을 제안한다. 제안한 방법을 이용하여 잘 알려진 두 개의 데이터에 적용하고 기존의 방법과 그 결과를 비교함으로써 군집의 질적 측면에서의 우수함을 보인다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.506-508
/
1999
본 논문에서 제안하는 계층적인 형태의 deformable model을 이용하면 기존의 deformable model 방법이 가지고 있던 여러 문제점을 해결할 수 있다. 특히 가장 큰 문제중의 하나인 초기위치를 찾는 문제나 적용시간이 오래 걸린다는 단점을 상당부분 해결할 수 있다. 또한 계층적인 형태를 사용하면 최종적으로 찾고자 하는 문체가 증가될수록 더 많은 시간상/공간상의 이익을 볼 수 있게 된다. 본 논문에서는 이처럼 계층적인 형태로 deformable model을 구성하는 방법과 계층적 deformable model을 영상에 적용하는 방법, 그리고 그 방법에 대한 공간적/시간적 복잡도 분석을 통해 그 효율성을 알아보았다.
Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierachical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.
Proceedings of the Korean Information Science Society Conference
/
2002.04a
/
pp.706-708
/
2002
DNA 마이크로어레이 실험으로 나온 데이터들을 클러스터링하는 것은 유전자의 기능과 유전자의 네트워크를 파악해 나가는데 도움을 주게 된다. 계층적 클러스터링(hierarchical clustering) 방법은 그러한 실험 분석에서 가장 보편적으로 사용되는 방법이다. 본 논문에서는 계층적 클러스터링을 통해서 나온 결과 트리에 대해서, 트리의 리프 노드들을 재배열함으로써, 인접한 리프 노드들간의 거리의 종합이 최소가 되도록 하는 문제인 리프오더링 방법을 다루었고, 새로운 리프오더링 알고리즘을 제안하였다. 그리고, 이를 포함한 여러 리프오더링 방법들에 대한 실험 및 생물학적인 분석을 하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.389-392
/
2006
원거리에서 로봇 핸드를 제어하는 일은 어려운 일이다. 이를 WWW 데이터를 이용 데이터의 불분명확한 점을 사용하여 데이터가 덜 명확한 점이 있더라도 이를 제어 시스템의 데이터로서 사용할 수 있는 점을 이용하여 원거리에서 데이터를 WWW를 이용하여 수신하고 이를 좀더 발전시켜 로봇 제어를 할 수 있겠끔 데이터의 유동성을 보장하는 계층적 분석 방법에 접목시켜 로봇 제어를 할 수 있겠끔 하였다. 불분명확한 제어 데이터를 사용하는 대신 계층적 알고리즘을 사용하여 이를 보완 할 수 있는 보완 시스템을 구성하였다라고 말할수 있다. 단순한 WWW데이터 만으로 제어가 되지 않는다는 것을 확인하고 이를 계층적 분석 방법에 사용하므로써 보강할수 있는 점을 확인하고 WWW데이터를 사용하지 않는 방법과도 결과를 비교 검토한다.
Journal of the Korean Data and Information Science Society
/
v.25
no.5
/
pp.999-1009
/
2014
Hierarchical clustering analysis helps easily exploring massive microarray data and understanding biological phenomena with dendrogram. But, because hierarchical clustering algorithms only consider the absolute similarity, it is difficult to illustrate a relative dissimilarity, which consider not only the distance between a pair of clusters, but also how distant are they from the rest of the clusters. In this study, we introduced the relative hierarchical clustering method proposed by Mollineda and Vidal (2000) and compared hierarchical clustering method and relative hierarchical method using the simulated data and the real data in the various situations. The evaluation of the quality of two hierarchical methods was performed using percentage of incorrectly grouped points (PIGP), homogeneity and separation.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2001.11a
/
pp.228-231
/
2001
인터넷의 활용이 급속하게 증가하여 인터넷에서의 정보보호에 대한 필요성이 대두되면서 표준화된 인터넷 정보보호 프로토콜인 IPsec이 등장하게 되었다. 이러한 IPsec은 현재 여러 가지 플랫폼에서 구현되고 있으며, 이러한 구현은 일반적으로 IP 계층에 통합하는 방법, BITS, BITW 중 하나의 방법론을 선택하고 있다. BITW는 outboard crypto processor를 사용하여 물리적인 인터페이스 카드 내에 IPsec을 구현하는 방법으로 효율성이 문제가 되므로 본 논문에서는 IP 계층에 통합하는 방법과 BITS 방법을 중심으로 장단점을 분석한다. 이에 본 논문은 리눅스 커널 상에서 IPsec을 구현하기 위해 리눅스 커널 모듈을 분석하고 가장 효율적이라 생각되는 IP 계층에 통합된 IPsec을 구현하는 방법을 제안한다.
멀티캐스트 데이터의 기밀성을 유지하기 위해서는 멀티캐스트 데이터를 그룹의 공동키로 암호화하여 전송하여야 한다. 그러나 멤버가 멀티캐스트 그룹에 동적으로 가입하거나 탈퇴하는 경우에는 그룹의 공통키를 변경하기 위해 필요한 계산량과 메시지의 수가 그룹의 크기에 비례해 커지는 규모확장성 문제에 봉착하게 된다. 이러한 문제를 해결하기 위해 그룹의 멤버나 키에 계층 구조를 두는 여러 가지 방법들이 제안된바 있으나 계층 멀티캐스트에 적용할 수 있는 방법은 아직 제안된 바가 없다. 본 논문에서는 계층 비디오 멀티캐스트 환경에 적용할 수 있는 두가지의 그룹 키 분배 방법을 제안한다. 첫 번째 방법은 각 계층에 대해 별도의 키 계층 구조를 유지하는 계층별 키트리 방법이며 두 번째 방법은 하나의 공통 키트리를 유지하고 각 계층을 공통 키트리상의 서브트리로 유지하는 통합 키트리 방법이다. 성능분석결과 멤버가 그룹에 가입해 있는 동안 계층 상승을 자주하는 경우는 계층별 키트리 방법이 유리하며 계층의 개수가 많고 계층 상승이 잦지 않은 경우는 통합 키트리 방법이 효율적이다.
Since the result data from DNA microarray experiments contain a lot of gene expression information, adequate analysis methods are required. Hierarchical clustering is widely used for analysis of gene expression profiles. In this paper, we study leaf-ordering, which is a post-processing for the dendrograms output by hierarchical clusterings to improve the efficiency of DNA microarray data analysis. At first, we analyze existing leaf-ordering algorithms and then present new approaches for leaf-ordering. And we introduce a software HCLO(Hierarchical Clustering & Leaf-Ordering Tool) that is our implementation of hierarchical clustering, some of existing leaf-ordering algorithms and those presented in this paper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.