• 제목/요약/키워드: 계층적 벌점화

검색결과 3건 처리시간 0.017초

계층적 벌점함수를 이용한 주성분분석 (Hierarchically penalized sparse principal component analysis)

  • 강종경;박재신;방성완
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.135-145
    • /
    • 2017
  • 주성분 분석(principal component analysis; PCA)은 서로 상관되어 있는 다변량 자료의 차원을 축소하는 대표적인 기법으로 많은 다변량 분석에서 활용되고 있다. 하지만 주성분은 모든 변수들의 선형결합으로 이루어지므로, 그 결과의 해석이 어렵다는 한계가 있다. sparse PCA(SPCA) 방법은 elastic net 형태의 벌점함수를 이용하여 보다 성긴(sparse) 적재를 가진 수정된 주성분을 만들어주지만, 변수들의 그룹구조를 이용하지 못한다는 한계가 있다. 이에 본 연구에서는 기존 SPCA를 개선하여, 자료가 그룹화되어 있는 경우에 유의한 그룹을 선택함과 동시에 그룹 내 불필요한 변수를 제거할 수 있는 새로운 주성분 분석 방법을 제시하고자 한다. 그룹과 그룹 내 변수 구조를 모형 적합에 이용하기 위하여, sparse 주성분 분석에서의 elastic net 벌점함수 대신에 계층적 벌점함수 형태를 고려하였다. 또한 실제 자료의 분석을 통해 제안 방법의 성능 및 유용성을 입증하였다.

평균-분산 가속화 실패시간 모형에서 벌점화 변수선택 (Penalized variable selection in mean-variance accelerated failure time models)

  • 권지훈;하일도
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.411-425
    • /
    • 2021
  • 가속화 실패시간모형은 로그 생존시간과 공변량간의 선형적 관계를 묘사해 준다. 가속화 실패시간모형에서 생존시간의 평균뿐만 아니라 변동성에도 영향을 미치는 공변량 효과를 추론하는 것은 흥미가 있다. 이를 위해 생존시간의 평균뿐만 아니라 분산을 모형화 하는 것이 필요하며, 이러한 모형을 평균-분산 가속화 실패시간모형이라 부른다. 본 논문에서는 벌점 가능도함수를 이용하여 평균-분산 가속화 실패시간모형에서 회귀모수에 대한 변수선택 절차를 제안한다. 여기서 벌점함수로서 LASSO, ALASSO, SCAD 그리고 HL (계층가능도)와 같은 네 가지 벌점함수를 연구한다. 제안된 변수선택 절차를 통해 중요한 공변량의 선택 뿐만 아니라 회귀모수의 추정을 동시에 제공할 수 있다. 제안된 방법의 성능은 모의실험을 통해 평가하고, 하나의 임상 예제자료를 통해 제안된 방법을 예증하고자 한다.

그룹변수를 포함하는 불균형 자료의 분류분석을 위한 서포트 벡터 머신 (Hierarchically penalized support vector machine for the classication of imbalanced data with grouped variables)

  • 김은경;전명식;방성완
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.961-975
    • /
    • 2016
  • H-SVM은 입력변수들이 그룹화 되어 있는 경우 분류함수의 추정에서 그룹 및 그룹 내의 변수선택을 동시에 할 수 있는 방법론이다. 그러나 H-SVM은 입력변수들의 중요도에 상관없이 모든 변수들을 동일하게 축소 추정하기 때문에 추정의 효율성이 감소될 수 있다. 또한, 집단별 개체수가 상이한 불균형 자료의 분류분석에서는 분류함수가 편향되어 추정되므로 소수집단의 예측력이 하락할 수 있다. 이러한 문제점들을 보완하기 위해 본 논문에서는 적응적 조율모수를 사용하여 변수선택의 성능을 개선하고 집단별 오분류 비용을 차등적으로 부여하는 WAH-SVM을 제안하였다. 또한, 모의실험과 실제자료 분석을 통하여 제안한 모형과 기존 방법론들의 성능 비교하였으며, 제안한 모형의 유용성과 활용 가능성 확인하였다.