• Title/Summary/Keyword: 계장화충격시험

Search Result 25, Processing Time 0.024 seconds

Instrumented Drop Weight Impact Testing of Polymer Materials (계장화에 의한 고분자 재료의 낙하추식 충격시험)

  • 장경영;김갑용;최만용
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.3-12
    • /
    • 1998
  • Polymer materials have been used offensively as construction materials for automobiles, ships, and airplanes in recent years, and their impact resistance has been obliged to be examined. In the present study, a dropped load and a specimen, equipped with high responsible strain gauges respectively, were dropped and then the changes of load and absorption energy with time were observed. It was found that the waveforms for dropped weight coincided with output signal wave for specimen during the destruction test. Based on this experimental result, three disc type of specimens with different compositions were prepared and examined. This instrumented impact test method showed that each specimen can be distinguished from each other better than conventional tests and is expected to contribute to assess test results of impact resistance for some materials under development.

  • PDF

Determination of Dynamic Fractrue Toughness for very Brittle Materials (매우 취성인 재료의 동적 파괴인성치 결정법)

  • 이억섭;한유상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.724-728
    • /
    • 1996
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughness for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracture toughness for very brittle materials because of the small crack initiation load. To evaluate the dynamic fracture toughness of verybrittle materials, it is necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has small Young's modulus, is used for the instrumented Charpyimpact test and a proper testing method is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initation of the very brittle materials.

  • PDF

Evaluation on dynamic stress intensity factor using strain gage method (스트레인게이지법을 이용한 동적응력확대계수 평가)

  • Lee, H.C.;Kim, D.H.;Kim, J.H.;Moon, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.304-309
    • /
    • 2000
  • Strain gage method is used to evaluate the mode I dynamic stress intensity factor of marging steel(18Ni) and titanium alloy(Ti-6A1-4V). To decide the best strain gage position on specimen, static fracture toughness test was performed. Then instrumented charpy impact test and dynamic tensile test was performed by using strain gage method for evlauating dynamic stress intensity factor. Strain gage signals on the crack tip region are used to calculate the stress intensity factors. It is found that strain gage method is more useful than method by using load which is obtained from impact tup to assess dynamic characteristics such as dynamic stress intensity factor.

  • PDF

The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel (복합조직강의 마찰용접부에 대한 동적파괴특성)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

Determination of Dynamic Fracture Toughnesses for very Brittle Materials (매우 취성인 재료의 동적 파괴인성치 결정법)

  • Lee, Ouk Sub;Jun, Hyun Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.160-165
    • /
    • 1997
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughnesses for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracturetoughnesses for very brittle materials because of the small crack initiation load which may be engulfed by the inertia load of the instrumented tup. To evaluate the dynamic fracture toughnesses of very brittle materials, such as chalk or plaster,it is thus, necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has very small Young's modulus comparing to one of the conventional steel tup, is used for the instrumented Charpy impact test, and a proper testing method to evaluate the dynamic fracture behavior of very brittle materials is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initiation of the very brittle materials.

  • PDF