• Title/Summary/Keyword: 계산 가속 기법

Search Result 83, Processing Time 0.024 seconds

Development of a Prediction Technique for Debris Flow Susceptibility in the Seoraksan National Park, Korea (설악산 국립공원 지역 토석류 발생가능성 평가 기법의 개발)

  • Lee, Sung-Jae;Kim, Gil Won;Jeong, Won-Ok;Kang, Won-Seok;Lee, Eun-Jai
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Recently, climate change has gradually accelerated the occurrence of landslides. Among the various effects caused by landslides,debris flow is recognized as particularly threatening because of its high speed and propagating distance. In this study, the impacts of various factors were analyzed using quantification theory(I) for the prediction of debris flow hazard soil volume in Seoraksan National Park, Korea. According to the range using the stepwise regression analysis, the order of impact factors was as follows: vertical slope (0.9676), cross slope (0.6876), altitude (0.2356), slope gradient (0.1590), and aspect (0.1364). The extent of the normalized score using the five-factor categories was 0 to 2.1864, with the median score being 1.0932. The prediction criteria for debris flow occurrence based on the normalized score were divided into four grades: class I, >1.6399; class II, 1.0932-1.6398; class III, 0.5466-1.0931; and class IV, <0.5465. Predictions of debris flow occurrence appeared to be relatively accurate (86.3%) for classes I and II. Therefore, the prediction criteria for debris flow will be useful for judging the dangerousness of slopes.

Development of Quality Assurance Program for the On-board Imager Isocenter Accuracy with Gantry Rotation (갠트리 회전에 의한 온-보드 영상장치 회전중심점의 정도관리 프로그램 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.212-223
    • /
    • 2006
  • Positional accuracy of the on-board imager (OBI) isocenter with gantry rotation was presented in this paper. Three different type of automatic evaluation methods of discrepancies between therapeutic and OBI isocenter using digital image processing techniques as well as a procedure stated in the customer acceptance procedure (CAP) were applied to check OBI isocenter migration trends. Two kinds of kV x-ray image set obtained at OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ},\;270^{\circ}$ and every $10^{\circ}$ and raw projection data for cone-beam CT reconstruction were used for each evaluation method. Efficiencies of the methods were also estimated. If a user needs to obtain an isocenter variation map with full gantry rotation, a method taking OBI image for every $10^{\circ}$ and fitting with 5th order polynomial was appropriate. However for a mere quality assurance (QA) purpose of OBI isocenter accuracy, it was adequate to use only four OBI Images taken at the OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ}\;and\;270^{\circ}$. Maximal discrepancy was 0.44 mm which was observed between the OBI source angle of $90^{\circ}\;and\;180^{\circ}$ OBI isocenter accuracy was maintained below 0.5 mm for a year. Proposed QA program may be helpful to Implement a reasonable routine QA of the OBI isocenter accuracy without great efforts.

  • PDF

A Study on the Evaluation of Cargo Securing Safety for Car ferry Ships Using Wave Height Information (해상 파고 정보를 활용한 카페리 선박의 고박안전성 평가에 관한 연구)

  • Yu, Yong-Ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 2021
  • Cargo securing safety, which is one factor for the safe operation of car ferry ships, has been applied since 2015 and evaluated by comparing the hull motion and securing load capacity generated by waves. To ensure the safe operation of the 3700 ton class car ferry, it is important to analyze the hull acceleration motion based on the sea wave information of the navigation area to determine the cargo securing load that can prevent the movement of cargo. In this study, the meteorological information of three wave buoys installed in Busan and Jeju area was analyzed for the past 5 years. In addition, the hull acceleration was measured in actual sea conditions and compared to that of numerical simulations. Under the condition of a significant wave height of 2.5 m from Feb to Mar, except typhoon seasons, the lateral acceleration was observed to be 1.5 m/s2 in real ship measuring and 1.8 m/s2 in numerical calculation. It was analyzed to be less than 40% under general weather conditions compared to the high wave warning using an approximate formula for estimating the hull motion by wave height. The cargo securing safety proposed in this study will be widely used based on the actual measuring acceleration with the sea wave height.