• 제목/요약/키워드: 계산시뮬레이션

검색결과 2,682건 처리시간 0.021초

한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성 (Korean Sentence Generation Using Phoneme-Level LSTM Language Model)

  • 안성만;정여진;이재준;양지헌
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.71-88
    • /
    • 2017
  • 언어모델은 순차적으로 입력된 자료를 바탕으로 다음에 나올 단어나 문자를 예측하는 모델로 언어처리나 음성인식 분야에 활용된다. 최근 딥러닝 알고리즘이 발전되면서 입력 개체 간의 의존성을 효과적으로 반영할 수 있는 순환신경망 모델과 이를 발전시킨 Long short-term memory(LSTM) 모델이 언어모델에 사용되고 있다. 이러한 모형에 자료를 입력하기 위해서는 문장을 단어 혹은 형태소로 분해하는 과정을 거친 후 단어 레벨 혹은 형태소 레벨의 모형을 사용하는 것이 일반적이다. 하지만 이러한 모형은 텍스트가 포함하는 단어나 형태소의 수가 일반적으로 매우 많기 때문에 사전 크기가 커지게 되고 이에 따라 모형의 복잡도가 증가하는 문제가 있고 사전에 포함된 어휘 외에는 생성이 불가능하다는 등의 단점이 있다. 특히 한국어와 같이 형태소 활용이 다양한 언어의 경우 형태소 분석기를 통한 분해과정에서 오류가 더해질 수 있다. 이를 보완하기 위해 본 논문에서는 문장을 자음과 모음으로 이루어진 음소 단위로 분해한 뒤 입력 데이터로 사용하는 음소 레벨의 LSTM 언어모델을 제안한다. 본 논문에서는 LSTM layer를 3개 또는 4개 포함하는 모형을 사용한다. 모형의 최적화를 위해 Stochastic Gradient 알고리즘과 이를 개선시킨 다양한 알고리즘을 사용하고 그 성능을 비교한다. 구약성경 텍스트를 사용하여 실험을 진행하였고 모든 실험은 Theano를 기반으로 하는 Keras 패키지를 사용하여 수행되었다. 모형의 정량적 비교를 위해 validation loss와 test set에 대한 perplexity를 계산하였다. 그 결과 Stochastic Gradient 알고리즘이 상대적으로 큰 validation loss와 perplexity를 나타냈고 나머지 최적화 알고리즘들은 유사한 값들을 보이며 비슷한 수준의 모형 복잡도를 나타냈다. Layer 4개인 모형이 3개인 모형에 비해 학습시간이 평균적으로 69% 정도 길게 소요되었으나 정량지표는 크게 개선되지 않거나 특정 조건에서는 오히려 악화되는 것으로 나타났다. 하지만 layer 4개를 사용한 모형이 3개를 사용한 모형에 비해 완성도가 높은 문장을 생성했다. 본 논문에서 고려한 어떤 시뮬레이션 조건에서도 한글에서 사용되지 않는 문자조합이 생성되지 않았고 명사와 조사의 조합이나 동사의 활용, 주어 동사의 결합 면에서 상당히 완성도 높은 문장이 발생되었다. 본 연구결과는 현재 대두되고 있는 인공지능 시스템의 기초가 되는 언어처리나 음성인식 분야에서 한국어 처리를 위해 다양하게 활용될 수 있을 것으로 기대된다.

MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교 (Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings)

  • 박상준;유영훈;전태주;김재근;남지은;윤평호;윤춘식;이종두
    • 대한핵의학회지
    • /
    • 제32권6호
    • /
    • pp.490-496
    • /
    • 1998
  • 목적: 본 연구의 목적은 MELAS 증후군과 미토콘드리아 근육병의 뇌 SPECT 소견을 알아보고 SPECT 소견과 자기공명영상 소견을 비교 분석하여 MELAS증후군의 특징적인 영상 소견을 찾아보고자 하였고 MELAS 증후군에 있어서 뇌 SPECT의 역할을 평가해 보고자 하였다. 대상 및 방법: 뇌졸중 유사 증상이나 경련 또는 발달 지연을 주소로 하였고, 혈청 또는 뇌척수액의 lactic acid치가 상승되어 있는 1세에서 25세의 5명의 환자를 대상으로 하였고 남녀비는 4:1이었다. 모든 환자에서 Tc-99m ECD를 이용한 뇌혈류 단일광전자방출 전산화 단층촬영술(SPECT)와 자기공명영상을 시행하여 영상 소견을 분석하였다. 결과: 자기공명영상에서는 주로 두정엽(4/5)과 후두엽(4/5), 그리고 기저핵(1/5)에 백질과 회백질에 증가된 T2 신호강도를 나타내었는데, 특정한 혈관 영역에는 부합하지 않는 병변의 분포양상을 보였다. SPECT상에서는 자기공명영상에서 이상소견을 보인 모든 부위에서 관류 저하를 보였으며 추가적으로 두정엽(1예), 측두엽(1예), 전두엽(1예), 기저핵(1예)와 시상(2예)에서도 감소된 Tc-99m ECD의 섭취를 나타내어서, 자기공명영상과 SPECT에서 이상 소견을 보인 수를 비교하면 자기공명영상에서 나타난 해부학적인 이상소견보다 SPECT에서 보인 관류 저하가 더 광범위하였다. 결론: MELAS 증후군의 SPECT에서는 특정한 혈관 영역에는 부합하지 않는 두정엽과 후두엽, 기저핵, 시상, 측두엽등의 관류저하를 보여 주었는데, 본 연구의 여러 제한점으로 인하여 MELAS 증후군에서만 나타나는 특징적인 소견이라고 할 수는 없었다. 자기공명영상에서 상응하는 이상 소견이 없이 SPECT에서만 관류 저하를 보이는 경우의 중요성은 좀 더 많은 수의환자를 대상으로 한 연구를 통해 평가되어져야 할 것으로 생각한다. 나타내었다.속도를 향상시킬 수 있었다. 정상인의 뇌영상에 대해 위치 정합을 실시한 결과 평균 거리 오차는 2mm 이하였다. 가중정규화 방법을 사용하였을 때 합성된 영상의 정성적인 식별 명확도가 향상하였다. 결론: 견실한 PET 영상 경계점 추출과 거리지도를 이용한 계산 속도의 향상을 통해 뇌 PET과 MR 영상 합성기법의 성능을 개선할 수 있었으며 이를 이용하며 개발한 영상정합 프로그램은 임상 환경에서 유용하게 사용될 수 있을 것이다.은 환자군을 대상으로 한 추가 연구가 필요한 것으로 판단된다.07% ID/g 이하로 매우 낮았다. 결론: 이실험에서 표지한 Re-188 황 교질은 표지효율과 안정성이 높고 임상적으로 방사선 활액막 절제술 등에 사용할 수 있을 것으로 생각한다.}I$] 또는 [$^{131}I$]OMIMT는 종양의 아미노산 대사 영상제제로 이용될 수 있으며 앞으로 이에 대한 임상연구가 필요할 것으로 생각되었다.>$R_A,\;R_v$의 결과간에 좋은 상관관계를 가졌다. 따라서 이러한 약역학 컴퓨터시뮬레이션이 SPECT 영상을 이용한 도파민 운반체 또는 수용체 정량분석을 최적화하는데 매우 유용할 것으로 생각된다.TEX>-CIT SPECT는 파킨슨병의 조기진단 및 진행 추적에 임상적으로 유용할 것으로 판단된다., SCC 4예, AC 1예)였으며, 11예 중 9예(81.8%)에서 방사선학적 검사결과와 Tc-99m MIBI섭취율의 변화가 일치하였다. 결론적으로, Tc-99m MIBI SPECT는 폐암병소의 국소화 및 방사선치료 효과의 판정에 어느정도 유용하리라 사료되었다.냈고 4명에서는 low CBD obstruction을 나타내었으며 후에 CBD stone, CBD carcinoma, gall bladder Ca.의 porta hepatis 전이 및 clonorchis worms의 cluster에

  • PDF