• Title/Summary/Keyword: 계면활성제 증진 복원

Search Result 3, Processing Time 0.053 seconds

Numerical Study on Operating Factors Affecting Performance of Surfactant-Enhanced Aquifer Remediation Process (계면활성제 증진 대수층 복원 프로세스에 영향을 미치는 운영 인자들에 대한 수치 연구)

  • Lee, Kun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.690-698
    • /
    • 2010
  • Contamination of groundwater resources by organic chemicals has become an issue of increasing environmental concern. Surfactant-enhanced aquifer remediation (SEAR) is widely recognized as one of the most promising techniques to remediate organic contaminations in-situ. Solutions of surfactant or surfactant with polymer are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In the design of surfactant-based technologies for remediation of organic contaminated aquifers, it is very important to have a considerable analysis using extensive numerical simulations prior to full-scale implementation. This study investigated the formation and flow of microemulsions during SEAR of organic-contaminated aquifer using the finite difference model UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model. The remediation process variables considered in this study were the sequence of injection fluids, the injection and extraction rate, the concentrations of polymer in surfactant slug and chase water, and the duration of surfactant injection. For each variable, temporal changes in injection and production wells and spatial distributions of relative saturations in the organic phase were compared. Cleanup time and cumulative organic recovery were also quantified. The study would provide useful information to design strategies for the remediation of nonaqueous phase liquid-contaminated aquifers.

Physical Characterizations and In Vitro Skin Permeation of Elastic Liposomes for Transdermal Delivery of Polygonum aviculare L. Extract (마디풀 추출물의 경피 전달을 위한 탄성 리포좀의 물리적 특성 및 In Vitro 피부 투과 연구)

  • Han, Saet Byeol;Kwon, Soon Sik;Jeong, Yoo Min;Kong, Bong Ju;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.694-701
    • /
    • 2014
  • In this study, Polygomun aviculare L. (P. aviculare L.) extract loaded elastic liposomes (ELPs) were investigated to enhance the transdermal delivery of P. aviculare L. extract composed of various flavonoids. ELPs were composed of egg phospholipids (PC) and edge activator ($Tego^{(R)}$ care 450) and the physical properties and in vitro permeation studies of ELPs were performed. Particle size ranged from 148.1 to 262.2 nm and deformability index was recorded as 11.5~25.4. Loading efficiency was from 53.1 to 66.3%. In vitro skin permeation studies using Franz diffusion cell demonstrated that ELP-4 having ratio of 85:15 for PC to $Tego^{(R)}$ care 450 exhibited the higher skin permeability than ELP-1, the general liposome without $Tego^{(R)}$ care 450. It was visually seen by fluorescence image restoration microscopy. The findings suggest that ELP-4 selected as the optimal formulation could be used as useful formulation for transdermal delivery of the extract.

The Effect of Ultrasound Application to Anionic/Non-ionic Surfactant Aided Soil-washing Process for Enhancing Diesel Contaminated Soils Remediation (디젤오염토양 복원 효율 증진을 위한 음이온/비이온 계면활성제 토양세척공정에 초음파 적용 영향)

  • Cho, Sang-Hyun;Son, Young-Gyu;Nam, Sang-Geon;Cui, Ming-Can;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.247-254
    • /
    • 2010
  • Ultrasound and Surfactant aided soil washing process has been shown to be an effective method to remove diesel from soils. The use of surfactants can improve the mobility of diesel in soil-water systems by increasing solubility of adsorbed diesel into surfactant micelles. However, a large amount of surfactant is required for treatment. In addition, synthetic surfactants, specially anionic, are more toxic and the surfactant wastewater is hard to treat by conventional wastewater treatments even by AOPs. Ultrasound improves desorption of the diesel adsorbed on to soil. The mechanisms are based on physical breakage of bonds by hot spot, directly impact onto soil particle surface, the fragmentation of long-chain hydrocarbons by micro-jet and microstreaming in the soil pores. The use of ultrasound as an enhancement method in both anionic and nonionic surfactant aided soil-washing processes were studied. And all experiments were examined proceeded under CMC surfactant concentration, frequency 35 khz, power 400 W, Soil-water ratio 1:3(wt%), particle size 0.24 ~ 2mm and initial diesel concentration. 20,000 mg/kg. Combination with ultrasound showed significant enhancements on all the processes. Especially, nonionic surfactant Triton-X100 with ultrasound showed remarkable enhancements and diesel removal rate enhanced by ultrasound helps desorpting of surfactant adsorbed onto soils which prevented decreasing surfactant activity.