• Title/Summary/Keyword: 계단 등반

Search Result 9, Processing Time 0.028 seconds

햅틱으로 작동되는 등반 로봇의 센싱 시스템 설계와 토크 해석

  • 김철수;윤상석;김용대;박기환;최창환;김승호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.196-196
    • /
    • 2004
  • 원자로의 원자로 해체 처리나 테러리스트의 폭탄 제거와 같은 극한 환경에서 작동하는 로봇은 계단이나 구덩이 같은 평평하지 알은 지형을 극복하기 위해서 off-load 능력이 필요하다. 극한 환경에서의 작업은 전형적으로 원격으로 조정되는 로봇을 요구한다. 본 논문에서는 향상된 관절 트랙 구조의 로봇을 제안한다. 로봇이 계단에 접촉할 때론 고려해서 조이스틱으로 햅틱 동작을 위한 센싱 시스템이 제안된다. 추가적으로, 제안된 로봇이 계단을 등반하는 알고리즘을 제안한다.(중략)

  • PDF

Kinematic Optimal Design on a New Robotic Platform for Stair Climbing (계단 등반을 위한 신개념 로봇 플랫폼의 기구변수 최적화)

  • Seo, Byunghun;Hong, Sung Yull;Lee, Jeh Won;Seo, TaeWon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.427-433
    • /
    • 2013
  • Stair climbing is one of critical issues for field robots to widen applicable areas. This paper presents optimal design on kinematic parameters of a new robotic platform for stair climbing. The robotic platform climbs various stairs by body-flip locomotion with caterpillar type main platform. Kinematic parameters such as platform length, platform height, and caterpillar rotation speed are optimized to maximize stair-climbing stability. Three types of stairs are used to simulate typical user conditions. The optimal design process is conducted based on Taguchi methodology, and resulting parameters with optimized objective function are presented. In near future, a prototype is assembled for real environment testing.

Inverse Dynamic Modeling of a Stair-Climbing Robotic Platform with Flip Locomotion (회전과 뒤집기 방식의 계단등반 로봇의 역동역학 모델링)

  • Choi, Jae Neung;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.654-661
    • /
    • 2015
  • Stairs are the most popular obstacles in buildings and factories. To enlarge the application areas of a field robotic platform, stair-climbing is very important mission. One important reason why a stair-climbing is difficult is that stairs are various in sizes. To achieve autonomous climbing of various-sized stairs, dynamic modeling is essential. In this research, an inverse dynamic modeling is performed to enable an autonomous stair climbing. Stair-climbing robotic platform with flip locomotion, named FilpBot, is analyzed. The FlipBot platform has advantages of robust stair-climbing of various sizes with constant speed, but the autonomous operation is not yet capable. Based on external constraints and the postures of the robot, inverse dynamic models are derived. The models are switched by the constraints and postures to analyze the continuous motion during stair-climbing. The constraints are changed according to the stair size, therefore the analysis results are different each other. The results of the inverse dynamic modeling are going to be used in motor design and autonomous control of the robotic platform.

Development of Stair Climbing Robot for Delivery Based on Deep Learning (딥러닝 기반 자율주행 계단 등반 물품운송 로봇 개발)

  • Mun, Gi-Il;Lee, Seung-Hyeon;Choo, Jeong-Pil;Oh, Yeon-U;Lee, Sang-Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.121-125
    • /
    • 2022
  • This paper deals with the development of a deep-learning-based robot that recognizes various types of stairs and performs a mission to go up to the target floor. The overall motion sequence of the robot is performed based on the ROS robot operating system, and it is possible to detect the shape of the stairs required to implement the motion sequence through rapid object recognition through YOLOv4 and Cuda acceleration calculations. Using the ROS operating system installed in Jetson Nano, a system was built to support communication between Arduino DUE and OpenCM 9.04 with heterogeneous hardware and to control the movement of the robot by aligning the received sensors and data. In addition, the web server for robot control was manufactured as ROS web server, and flow chart and basic ROS communication were designed to enable control through computer and smartphone through message passing.