• Title/Summary/Keyword: 경화개략도

Search Result 2, Processing Time 0.023 seconds

Effect on the Residual Stress of Cure Profiles, Fillers and Mold Constraints in an Epoxy System

  • Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • A dilatometer was used to investigate the effect of cure conditions, mold types and the presence of filler in an epoxy system. These studies showed shrinkage in the cured epoxy when heating it through the glass transition temperature region. The magnitude of the shrinkage, related to stress build up in the epoxy during curing, was influenced by the processing conditions, filler presence and the nature of the mold used to contain the resin. Cure and cyclic cure at a lower temperature, prior to a post cure, decreased the magnitude of observed shrinkage. Cure shrinkage decreased with the number of cyclic cures. Post cured samples outside the mold led to less shrinkage compared with samples in the mold. Sample cured in a silicon mold represented less shrinkage than sample cured in an aluminum mold. Sample containing kaolin filler showed less shrinkage than unfilled sample.

Prediction of Failure Behavior in Composite Motor Cases by Acoustic Emission during Hydroproof Testing (수압보증시험시의 음향방출에 의한 복합재 연소관의 파괴거동 예측)

  • Song, Sung-Jin;Oh, Chi-Hwan;Jeong, Hyun-Jo;Rhee, Sang-Ho;Lim, Soo-Yong;Kim, Ho-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.92-102
    • /
    • 1998
  • Prediction of failure behavior in filament-wound composite motor cases is one of the important issues for their reliable application. Acoustic emission during hydroproof testing of the cases is used to solve this problem. Based on the acoustic emission behavior, failure sites can be located successfully. The identification of failure modes is also possible using the distribution of acoustic emission amplitude. Due to the limitation in the number of samples, it is not possible to predict the final burst pressure of motor cases and the effect of impact damage on the final burst pressure.

  • PDF