• Title/Summary/Keyword: 경험적 추정식

Search Result 191, Processing Time 0.028 seconds

Dynamic Shear Behavior Characteristics of PHC Pile-cohesive Soil Ground Contact Interface Considering Various Environmental Factors (다양한 환경인자를 고려한 PHC 말뚝-사질토 지반 접촉면의 동적 전단거동 특성)

  • Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.5-14
    • /
    • 2024
  • PHC piles demonstrate superior resistance to compression and bending moments, and their factory-based production enhances quality assurance and management processes. Despite these advantages that have resulted in widespread use in civil engineering and construction projects, the design process frequently relies on empirical formulas or N-values to estimate the soil-pile friction, which is crucial for bearing capacity, and this reliance underscores a significant lack of experimental validation. In addition, environmental factors, e.g., the pH levels in groundwater and the effects of seawater, are commonly not considered. Thus, this study investigates the influence of vibrating machine foundations on PHC pile models in consideration of the effects of varying pH conditions. Concrete model piles were subjected to a one-month conditioning period in different pH environments (acidic, neutral, and alkaline) and under the influence of seawater. Subsequent repeated direct shear tests were performed on the pile-soil interface, and the disturbed state concept was employed to derive parameters that effectively quantify the dynamic behavior of this interface. The results revealed a descending order of shear stress in neutral, acidic, and alkaline conditions, with the pH-influenced samples exhibiting a more pronounced reduction in shear stress than those affected by seawater.

Development of the pH Inhibition Model Adapting Pseudo Toxic Concentration (CPT) Concept for Activated Sludge Process (의사독성농도 (CPT) 개념을 도입한 활성슬러지 공정 pH 저해 모델 개발)

  • Ko, Joo-Hyung;Jang, Won-Ho;Im, Jeong-Hoon;Woo, Hae-Jin;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2037-2046
    • /
    • 2000
  • It has been reported that the inhibition effect of pH on activated sludge follows noncompetitive inhibition kinetics. However. the noncompetitive inhibition kinetic equation can not be directly applied to pH inhibition because of the difficulty in quantification of pH in terms of inhibitor concentration. So, many empirical equations have been developed to describe the pH inhibition effect especially for acidic condition. In this research. the pseudo toxic concentration ($C_{PT}$) concept model to quantify pH inhibition effect on activated sludge was proposed and compared to other existing models. The $C_{PT}$ concept model can explain the reduction of the maximum specific growth rate (${\mu}_{max}$) caused by the pH inhibition more accurately than any other models, at a wide range of pH. The only model parameter. $K_I$ can be easily estimated by Lineweaver-Burk linearization method.

  • PDF

An Experimental Study on the Printing Characteristics of Traditional Korean Paper (Hanji) Using a Replicated Woodblock of Wanpanbon Edition Shimcheongjeon (완판본(完板本) 심청전 복각 목판을 이용한 한지상의 인출특성에 관한 실험적 연구)

  • Yoo, Woo Sik;Kim, Jung Gon;Ahn, Eun-Ju
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.289-301
    • /
    • 2021
  • When investigating old, printed documents, determining whether a work is printed on a woodblock or using a movable metal type is crucial. It is because the history of printing in Korea and across the world relies on determining the relevant printing invention used and the time of use of the movable metal type. Deciphering details from woodblock and metal prints requires various kinds of information regarding the imprint and the work's printing background, such as information on the characters in the printed document, the outline of the pages, the type of ink used, the production period of the ink, and the production period of the Korean paper. Analyzing such information can generally reveal the production period and the methods used on the old document. However, as such information is not documented systematically, relying on the researcher's judgment based on their experience and perception becomes inevitable. This study conducted an experimental investigation of the printing characteristics of woodblock prints using a replicated woodblock of the Wanpanbon edition of the Shimcheongjeon. Subsequently, the various phenomena and characteristics appearing on the woodblock prints were documented for future reference to determine the printing method of old documents. Finally, woodblock novels without an imprint may be used as a reference to estimate the printing dates by determining the degree of wear on the woodblock.

Using Synoptic Data to Predict Air Temperature within Rice Canopies across Geographic Areas (종관자료를 이용한 벼 재배지대별 군락 내 기온 예측)

  • 윤영관;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.199-205
    • /
    • 2001
  • This study was conducted to figure out temperature profiles of a partially developed paddy rice canopy, which are necessary to run plant disease forecasting models. Air temperature over and within the developing rice canopy was monitored from one month after transplanting (June 29) to just before heading (August 24) in 1999 and 2001. During the study period, the temporal march of the within-canopy profile was analyzed and an empirical formula was developed for simulating the profile. A partially developed rice canopy temperature seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures. On sunny days, air temperature at the height of maximum leafages was increased at the same rate as the ambient temperature above the canopy after sunrise. Below the height, the temperature increase was delayed until the solar noon. Air temperature near the water surface varied much less than those of the outer- and the upper-canopy, which kept increasing by the time of daily maximum temperature observed at the nearby synoptic station. After sunset, cooling rate is much less at the lower canopy, resulting in an isothermal profile at around the midnight. A fairly consistent drop in temperature at rice paddies compared with the nearby synoptic weather stations across geographic areas and time of day was found. According to this result, a cooling by 0.6 to 1.2$^{\circ}C$ is expected over paddy rice fields compared with the officially reported temperature during the summer months. An empirical equation for simulating the temperature profile was formulated from the field observations. Given the temperature estimates at 150 cm above the canopy and the maximum deviation at the lowest layer, air temperature at any height within the canopy can be predicted by this equation. As an application, temperature surfaces at several heights within rice fields were produced over the southwestern plains in Korea at a 1 km by 1km grid spacing, where rice paddies were identified by a satellite image analysis. The outer canopy temperature was prepared by a lapse rate corrected spatial interpolation of the synoptic temperature observations combined with the hourly cooling rate over the rice paddies.

  • PDF

Estimation of cremation temperature on Baekje human bones from Seoul Seokchon-dong Ancient Tomb No.1 using XRD and FT-IR analysis (XRD와 FT-IR을 이용한 백제시대 옛사람 뼈의 화장(火葬) 온도 추정 - 서울 석촌동 고분군 1호 매장의례부 출토 옛사람 뼈를 중심으로 -)

  • YU, Jia;PARK, Serin;SHIN, Jiyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.3
    • /
    • pp.228-241
    • /
    • 2021
  • Cremated archaeological bones provide crucial information to unravel the details of ancient cremation events and funeral culture. The research on cremated bones to date has been mainly focused on extracting archaeological information in Korea. Recently, the techniques of physical anthropology have been applied to obtain biological information and cremation temperatures for individuals. This study analyzed human remains excavated from Seoul Seokchon-dong Ancient Tombs and determined whether there were human cremations as well as the estimated cremation temperatures. There was no trace of fire in the pits where cremated bones were found; therefore, it is assumed that they were deposited with the artifacts. In this study, four samples were selected according to the surface color of the bones, and X-ray diffraction analysis (XRD) and Fourier-transformed infrared spectroscopy (FT-IR) were used for analysis. All four of the Seokchon-dong cremated bones were found, based on the crystallization index of X-ray diffraction analysis, to have experienced cremation above the temperature of 700℃. Infrared spectroscopy results indicated that the four bones from Seokchon-dong were cremated at temperatures above 700℃ and below 1,000℃. IR peaks were observed at 700℃, whereas no changes were found when bones experienced more than 1000℃. We assume that the cremated people in the Seokchon-dong Tombs were people of high-status because cremation at such a high temperature at that period required much effort. Here we present significant evidence of the cremation status and temperature of archaeological human bones on the basis of XRD and FT-IR, allowing for the restoration of the cremation events and funeral culture in archaeological sites.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.

A Case of Raine Syndrome (Raine 증후군 1례)

  • Park, Hye Jin;Lee, Jeong Jin;Seo, Jeong Sik;Kim, Hyo Jin;Choi, Je Yong;Lee, Jun Hwa;Nho, Un Seok;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.1
    • /
    • pp.91-94
    • /
    • 2003
  • Raine syndrome was described as an unknown syndrome in 1989. It is characterized by severe craniofacial anomalies with microcephaly, hypoplastic nose, depressed nasal bridge, exophthamos/protosis, gum hypertrophy, cleft palate, low-set ears, small mandible, narrow chest, wide cranial sutures and choanal atresia or stenosis, by generalized osteosclerosis with subperiosteal thickening of ribs, clavicles and diaphysis of long bones, and by intracranial calcifications in the particularly periventricular area. It undergoes an autosomal recessive inheritance. Twelve cases of Raine syndrome have been reported in the literature. However, a case of Raine syndrome in Korea has not been reported yet. Therefore, we describe a female newborn with Raine syndrome with a brief review of the literatures.

The Structural Safety Diagnosis of Three-Story Pagoda in Bulkuk Temple Using the Probability of Failure. (암석의 파괴 확률 분석을 통한 불국사 삼층석탑 구조 안전 진단)

  • Seo, Man-Cheol;Song, In-Seon;Choe, Hui-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Three-Story Pagoda(Seokga Pagoda) in Bulkuk temple in the city of Kyungju, Kyungbuk, Korea. Ultrasonic wave velocities were measured at 456 points of the pagoda comprising 44 blocks to estimate the mechanical properties of rock blocks constituting the pagoda. The measured velocities have the range of 1217 to 4403 m/sec with the average of 3227 m/sec. The empirical relationship between the ultrasonic velocity and the uniaxial compressive strength yielded the estimation of strength of each block, ranging from 134 to 844 kg/cm^2 and averaging 463 kg/cm^2. With an assumption that the strength of each block is described as a random variables having a normal distribution, we calculated the probability of failure of rock blocks of the pagoda. Our investigation revealed that the probability of the structural failure due to the weight of higher blocks is very low. However, the probability of partial failure around contact area is substantial, which is consistent with the appearance that edges and the corners of some blocks were broken off. The platform under the body of the pagoda appeared to be structurally weak as the probability of tensile failure of the lower platform is up to 18%, and diagonal fractures are shown where the probability of failure is high.

  • PDF

An Experimental Reproduction Study on Characteristics of Woodblock Printing on Traditional Korean Paper (Hanji) (목판인쇄 재현실험을 통한 한지상의 인출특성에 관한 연구)

  • Yoo, Woo Sik;Kim, Jung Gon;Ahn, Eun-Ju
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.590-605
    • /
    • 2021
  • The history of printing technology in Korea is studied by investigating existing ancient documents and records and comparing accumulated data and knowledge. Cultural property research requires non-destructive testing and observation with the naked eye or aided by a microscope. Researchers' experience and knowledge are required even though they cannot guarantee the outcome. For ancient documents and records that are presumed to consist of woodblock printing, wood type printing, metal type printing, or their combinations, each researcher draws various opinions and conclusions. This often causes confusion and divides the opinions of ordinary citizens and field specialists. Among them, the criteria for judging ancient documents or books printed using woodblock and metal movable material are ambiguous. Academic research on the development history of printing technology in ancient Korea has been stagnant, and conflicts among researchers have also erupted. Involvement of national investigative agencies not specialized in cultural properties has exacerbated the situation. In this study, we investigated printing characteristics that are likely to serve as more objective judgment criteria by quantitatively analyzing the experiments of retrieving several sheets of Korean paper (Hanji) using a replicated Hunminjeongeum (訓民正音) woodblock and quantitatively analyzing the images of the printed papers. In addition, the validity and questions for the typical phenomena presented as a method for distinguishing between woodblock and metal print are reviewed. We investigated the possibility of developing new objective judgement criteria through quantitative analysis using image analysis and investigating the printing characteristics of Korean paper through a reproduction experiment of woodblock printing.

Characteristics of Dynamic Shear Behavior of Pile-Soil Interface Considering pH Conditions of Groundwater (지하수 pH조건을 고려한 말뚝-지반 접촉면의 동적 전단거동 특성)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.5-17
    • /
    • 2022
  • A pile is a type of medium for constructing superstructures in weak geotechnical conditions. A pretensioned spun high-strength concrete (PHC) pile is composed of high-strength concrete with a specified strength greater than 80 MPa. Therefore, it has advantages in resistance to axial and bending moments and quality control and management since it is manufactured in a factory. However, the skin friction of a pile, which accounts for a large portion of the pile bearing capacity, is only approximated using empirical equations or standard penetration test (SPT) N-values. Particularly, there are some poor research results on the pile-soil interface under the seismic loads in Korea. Additionally, some studies do not consider geoenvironmental elements, such as groundwater pH values. This study performs sets of cyclic simple shear tests using submerged concrete specimens for 1 month to consider pH values of groundwater and clay specimens composed of kaolinite to generate a pile-soil interface. 0.2 and 0.4 MPa of normal stress conditions are considered in the case of pH values. The disturbed state concept is employed to express the dynamic behavior of the interface, and the disturbed function parameters are newly suggested. Consequently, the largest disturbance increase under basic conditions is observed, and an early approach to the failure under low normal stress conditions is presented. The disturbance function parameters are also suggested to express this disposition quantitatively.