• Title/Summary/Keyword: 경험적 모드분해기법

Search Result 7, Processing Time 0.02 seconds

Hierarchical Smoothing Technique by Empirical Mode Decomposition (경험적 모드분해법에 기초한 계층적 평활방법)

  • Kim Dong-Hoh;Oh Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.319-330
    • /
    • 2006
  • A signal in real world usually composes of multiple signals having different scales of frequencies. For example sun-spot data is fluctuated over 11 year and 85 year. Economic data is supposed to be compound of seasonal component, cyclic component and long-term trend. Decomposition of the signal is one of the main topics in time series analysis. However when the signal is subject to nonstationarity, traditional time series analysis such as spectral analysis is not suitable. Huang et. at(1998) proposed data-adaptive method called empirical mode decomposition (EMD) . Due to its robustness to nonstationarity, EMD has been applied to various fields. Huang et. at, however, have not considered denoising when data is contaminated by error. In this paper we propose efficient denoising method utilizing cross-validation.

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

A Development on the Fault Prognosis of Bearing with Empirical Mode Decomposition and Artificial Neural Network (경험적 모드 분해법과 인공 신경 회로망을 적용한 베어링 상태 분류 기법)

  • Park, Byeonghui;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.985-992
    • /
    • 2016
  • Bearings have various uses in industrial equipment. The lifetime of bearings is often lesser than anticipated at the time of purchase, due to environmental wear, processing, and machining errors. Bearing conditions are important, since defects and damage can lead to significant issues in production processes. In this study, we developed a method to diagnose faults in the bearing conditions. The faults were determined using kurtosis, average, and standard deviation. An intrinsic mode function for the data from the selected axis was extracted using empirical mode decomposition. The intrinsic mode function was obtained based on the frequency, and the learning data of ANN (Artificial Neural Network) was concluded, following which the normal and fault conditions of the bearing were classified.

Lateral Load Distribution Estimation of a PSC Girder Bridge from Dynamic Loading Test (동적재하시험을 통한 PSC 거더교의 횡분배 측정)

  • Kim, Sung-Wan;Cheung, Jin-Hwan;Kim, Seong-Do;Park, Jae-Bong;Lee, Myoung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.60-68
    • /
    • 2017
  • Since the bridge is the main facility of the road that is the core of the civil infrastructure, the bridge is constructed to ensure stability and serviceability during the traffic use. In order to secure the safety of bridges, evaluating the integrity of bridges at present is an important task in the maintenance work of bridges. In general, to evaluate the load carrying capacity of bridges, it is possible to confirm the superimposed behavior and symmetric behavior of bridges by estimating the lateral load distribution factor of the bridges through vehicle loading tests. However, in order to measure the lateral load distribution factor of a commonly used bridge, a static loading test is performed. There is a difficulty in traffic control. Therefore, in this study, the static displacement component of the bridge measured in the dynamic loading test and the ambient vibration test was extracted by using empirical mode decomposition technique. The lateral load distribution was estimated using the extracted static displacement component and compared with the lateral load distribution factor measured in the static loading test.

A Study on Fault Diagnosis Algorithm for Rotary Machine using Data Mining Method and Empirical Mode Decomposition (데이터 마이닝 기법 및 경험적 모드 분해법을 이용한 회전체 이상 진단 알고리즘 개발에 관한 연구)

  • Yun, Sang-hwan;Park, Byeong-hui;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.23-29
    • /
    • 2016
  • Rotary machine is major equipment in industry. The rotary machine is applied for a machine tool, ship, vehicle, power plant, and so on. But a spindle fault increase product's expense and decrease quality of a workpiece in machine tool. A turbine in power plant is directly connected to human safety. National crisis could be happened by stopping of rotary machine in nuclear plant. Therefore, it is very important to know rotary machine condition in industry field. This study mentioned fault diagnosis algorithm with statistical parameter and empirical mode decomposition. Vibration locations can be found by analyze kurtosis of data from triaxial axis. Support vector of data determine threshold using hyperplane with fault location. Empirical mode decomposition is used to find fault caused by intrinsic mode. This paper suggested algorithm to find direction and causes from generated fault.

Intrinsic Mode Function and its Orthogonality of the Ensemble Empirical Mode Decomposition Using Orthogonalization Method (직교화 기법을 이용한 앙상블 경험적 모드 분해법의 고유 모드 함수와 모드 직교성)

  • Shon, Sudeok;Ha, Junhong;Pokhrel, Bijaya P.;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • In this paper, the characteristic of intrinsic mode function(IMF) and its orthogonalization of ensemble empirical mode decomposition(EEMD), which is often used in the analysis of the non-linear or non-stationary signal, has been studied. In the decomposition process, the orthogonal IMF of EEMD was obtained by applying the Gram-Schmidt(G-S) orthogonalization method, and was compared with the IMF of orthogonal EMD(OEMD). Two signals for comparison analysis are adopted as the analytical test function and El Centro seismic wave. These target signals were compared by calculating the index of orthogonality(IO) and the spectral energy of the IMF. As a result of the analysis, an IMF with a high IO was obtained by GSO method, and the orthogonal EEMD using white noise was decomposed into orthogonal IMF with energy closer to the original signal than conventional OEMD.

Analysis of Baltic Dry Bulk Index with EMD-based ANN (EMD-ANN 모델을 활용한 발틱 건화물 지수 분석)

  • Lim, Sangseop;Kim, Seok-Hun;Kim, Daewon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.329-330
    • /
    • 2021
  • 벌크화물운송은 해상운송시장에서 가장 큰 규모이고 철강 및 에너지 산업을 뒷받침 하는 중요한 시장이다. 또한 운임의 변동성이 가장 큰 시장으로 상당한 수익을 기대할 수 있는 반면에 파산에 이르는 큰 손실이 발생할 수 있기때문에 시장 참여자들은 합리적이고 과학적인 예측을 기반하여 의사결정을 해야 한다. 그러나 해운시장에서는 과학적 의사결정보다는 경험기반의 의사결정에 의존하기 때문에 시황변동성에 취약하다. 본 논문은 벌크운임예측에 신호 분해 방법인 EMD와 인공신경망을 결합한 하이브리드 모델을 적용하여 과학적 예측방법을 제시하고자 한다. 본 논문은 학문적으로 해운시장 운임예측연구에서 거의 시도되지 않았던 시계열분해법과 기계학습기법을 결합한 하이브리드 모델을 제시하였다는데 의미가 있으며 실무적으로는 해운시장에서 빈번이 일어나는 의사결정의 질이 제고되는데 기여할 것으로 기대된다.

  • PDF