• Title/Summary/Keyword: 경추상해

Search Result 11, Processing Time 0.029 seconds

Development of Analytical Model of Human Cervical Spine (인체 경추부의 해석 모델 개발)

  • 최형연;이태희;엄홍원;황민철;강승백
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.311-320
    • /
    • 1997
  • 사회가 발달함에 따라 교통사고 등에 의한 외상 환자는 20 -30 년전에 비해 기하급수적으로 증가 하고 있으며 그러한 외상 중에 경추부 상해의 빈도는 매우 높다. 경추부 상해 원인을 규명하기 위한 임상학적 시도는 한계성을 지니고 있다. 본 논문에서는 실제 경추부 형상을 바탕으로 근육과 인대 등 을 비선형 스프링, 댐퍼 등으로 수치 모델링하여 후면 충돌시 경추부의 거동과 경추부에 미치는 상해를 구현하였다. 이를 이용하여 편타성 상해와 에어백으로 인한 경추부 골절의 생리학적 원인을 분석하고 자 한다.

  • PDF

Analysis of Human Body Injury by Non-penetrating Ballistic Impact Using a Finite Element Model of the Head and Neck (근육 모델이 고려된 두부 및 경추 유한요소모델을 이용한 비관통 피탄 충격에 의한 인체 상해 해석)

  • Kang, Moon Jeong;Jo, Young Nam;Chae, Jeawook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Ballistic impact on a soldier wearing a helmet can induce fatal injury, even if the helmet is not penetrated. Although studies on this type of injury have been performed, most of them have used an analytical model focused on head injury only. The injury of the neck muscles and cervical vertebrae by non-penetrating ballistic impact affects the survivability of soldiers, despite not inflicting fatal injury to the human body. Therefore, an analytical model of the head and neck muscles are necessary. In this study, an analysis of human body injury using the previously developed head model, as well as a cervical model with muscles, was performed. For the quantitative prediction of injury, the stress, strain, and HIC were compared. The results from the model including the cervical system indicated a lower extent of injury than the results from the model excluding them. The results of head injury were compared with other references for reliability.

A Stucy on the Whiplash Injury due to the Low Speed Rear-end Collision (저속 후면 충돌로 인한 편타성 상해에 관한 연구)

  • 최형연;윤석배;김희성
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.321-330
    • /
    • 1997
  • 교통사고로 인하여 정형외과를 찾는 환자 중 60%정도가 경추부 상해 때문이나 이에 대한 보호장구개발은 미흡한 실정에 있다. 자동차 충돌사고시의 경추부 상해는 대 부분이 후면 충돌로부터 기인하며 특히 차체의 변형이 적은 저속충돌시에도 경추부의 연질 조직이 상하는 편차성 상해가 쉽게 발생된다. 본 논문에서는 이러한 편타성 상 해를 보다 근본적으로 분석하기 위하여 활차 실험과 그에 대한 컴퓨터 시뮬레이션 결 과를 소개하였다. 현재 진행 중인 본 연구를 통하여 아직까지 규명되지 않은 경추부 의 하중 경로와 상해기구를 파악하고자 하며 이를 바탕으로 보다 인체공학적인 시트 설계에 필요한 기반 기술을 확보하고자 한다.

  • PDF

Occupant Neck Injury Assessment Caused by Backward Movement of a Preceding Vehicle at a Low Impact Velocity (선행 차량의 후진에 의한 저속 충돌 시 탑승자 경추 상해에 대한 연구)

  • Kim, Seongjin;Jeon, Woojung;Park, Woosik;Seo, Youngil;Son, Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2013
  • This study assesses neck injury of occupants in a real traffic accident case that a preceding vehicle moved backward and impacted a parked vehicle at a low velocity. This case is different from a case of whiplash injury caused by rear impact on vehicle. The impact velocity was estimated from damages of the two vehicle bumpers and the displacement of the parked vehicle was also estimated from CCTV images. MADYMO simulation was performed based on the vehicle specifications and investigation report. The comparison of neck flexion moments with the corresponding injury criteria revealed that occupants of the parked vehicle might have hardly neck injury.

Whiplash Injury Conditions of Rear-End Collisions at Low-Speed (저속 추돌사고에서 목 상해 조건에 대한 연구)

  • Kim, Myeongju;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.58-76
    • /
    • 2019
  • As the number of reported injuries has tended to increase over time, large hospitalization expenditure from excessive medical treatments and hospitalization, and insurance frauds associated with moral hazard in minor collisions have caused a global societal problem. Many occupants of rear-ended vehicles involved in rear-end collisions complain of whiplash injury, which is also known as neck injury, without any anatomical and radiological evidence. With only clinical symptoms, stating that a whiplash injury is a type of injury defined by the Abbreviated Injury Scale would be difficult. Therefore, this study focuses on minor rear-end collisions, where the rear-ender vehicle collides with the rear-ended vehicle at rest. The mathematics dynamic model is employed to simulate a total of 100 rear-end collision scenarios based on various weights and collision speeds and identify how the weights and speeds of both vehicles influence the risk of whiplash injury in occupants involved in minor rear-end collisions. The possibility of an injury is very high when the same-weight vehicles are involved in accidents at collision speeds of 15 km/h or higher. The possibilities are 36% and 84% with collision speeds of 15 km/h and 20 km/h, respectively, if weights are disregarded.

Development of Multibody Dynamic Model of Cervical Spine for Virtual In Vitro Cadaveric Experiment (가상 생체외 사체 실험용 경추 다물체 동역학 모델 개발)

  • Lim, Dae Seop;Lee, Ki Seok;Kim, Yoon Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.953-959
    • /
    • 2013
  • In this study, a multibody dynamic model of the cervical spine was developed for a virtual in-vitro cadaveric experiment. The dynamic cervical spine model was reconstructed based on Korean CT images and the material properties of joints and soft tissue obtained from in-vitro experimental literature. The model was validated by comparing the inter-segmental rotation, multi-segmental rotations, load-displacement behavior, ligament force, and facet contact force with the published in-vitro experimental data. The results from the model were similar to published experimental data. The developed dynamic model of the cervical spine can be useful for injury analysis to predict the loads and deformations of the individual soft-tissue elements as well as for virtual in-vitro cadaveric experiments.

Whiplash Injury Case Studies through Low Speed Rear-end Crash Tests (차대차 추돌사고 재현시험을 통한 경추염좌 상해 위험도 연구)

  • Lim, Namkyoung;Shim, Sangwoo;Jung, Hyuncheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.432-438
    • /
    • 2016
  • Whiplash injuries in low-speed rear-end collisions are the most common injuries and has been a social issue in insurance industry, such as excessive medical claim costs along with exaggerated injuries of victims and treatments from hospitals. According to the Korea Insurance Development Institute reports, the number of claims by rear-end collision was approximately 703,000, which accounts for 53.6 % of the total car-to-car collisions in 2014. Part of the neck injury claims in the Korea car insurance was approximately 28.3 %. Furthermore, approximately 98.4% of the injured persons in rear-end collisions sustained minor injuries under AIS2. In order to improve this situation as well as find out the severity of neck injuries from rear-end collision, the Korea Automobile Insurance Repair Research and Training Center conducted car-to-car rear-end crash tests that striking vehicles(SUV) collided into different sizes of struck-vehicles(small, middle, and large sedan) at the impact speeds of 8 km/h ~ 16 km/h. In order to analyze the whiplash injury, the BioRID-II was seated in each struck-vehicles, and the neck injury criteria(NIC), head contact time, maximum vehicle accelerations, and mean vehicle accelerations were calculated from values from the accelerations of the dummy and the struck-vehicles.

Measurement of Ideal Trajectory of The Cervical Pedicle for Robotic Surgery (로봇 수술을 위한 경추 척추경에 대한 이상적 궤적의 측정)

  • Kwak, Ho-Young;Huh, Jisoon;Lee, Won Joo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.99-100
    • /
    • 2017
  • 많은 연구에서 측면 나사 고정(laminar screw fixation)보다 척추경 나사 고정(pedicle screw fixation)의 생체 역학 강도가 더 나은 것으로 알려져 있다. 그러나 비교적 작은 크기의 척추경(pedicle)과 척수(spinal code), 신경 뿌리 및 척추 동맥에 대한 상해의 위험으로 일반적으로 이 방법은 사용에 제한이 있었다. 최근 3차원 모델링 및 3D 프린팅 기술의 진보는 해부학적인 연구, 특히 척추를 포함한 뼈와 관련된 연구를 용이하게 하고 있으며, 로봇 수술을 위한 다양한 아이디어를 제공하고 있다. 본 연구는 로봇 암(robotic arm)으로 경추 척추경에 나사를 삽입할 때 사용될 수 있는 척추경 나사 삽입을 위한 이상적인 궤적을 계산하는 방법을 제시하였다.

  • PDF

A Biomechanical Analysis in the Neck Injury according to the Position of Read Restraint During Low Speed Rear-End Impacts (저속 정후면 추돌시 머리구속장치 위치에 따른 목 상해에 관한 생체 역학적 연구)

  • Jo Huichang;Kim Youngeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.132-139
    • /
    • 2005
  • The driving position of head restraints and the relative risk of neck injury were studied in the computer simulation. MADYMO human model with the detail neck model was used to define the magnitude and direction of internal forces acting on the cervical spine during rear-end impact and to determine the effect of the initial position of the occupant's head with respect to the head restraints. Maximum reaction forces were generated during the head contact to the restraint and relatively large forces were generated at each spinal components in lower cervical spine in proportion to backset and height distance increasement.