• Title/Summary/Keyword: 경엽살포법

Search Result 4, Processing Time 0.024 seconds

An Optimal Standardized in vitro Bioassay to Evaluate Susceptibility of Green Peach Aphid, Myzus persicae (Sulzer)(Insecta: Hemoptera: Aphididae), to Aphicides (복숭아혹진딧물, Myzus persicae (Sulzer)(Insecta: Hemoptera: Aphididae), 살진딧물 최적 in vitro 살충력 검정 방법 확립)

  • Ka Hee Cho;Hyo Jung Kim;Young Cheol Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.3
    • /
    • pp.139-147
    • /
    • 2023
  • Leaf-spray in vitro bioassays appraise new aphicidal formulations for managing deleterious plant-feeding aphids. The formulation may utilize alternative and integrated strategies. However, leaf spraying even under controlled conditions may affect aphid reproduction and mortality. This study examines leaf spray applications for optimum and reproducible aphicidal results using tobacco leaves overlaid on cotton fabric or water agar surfaces. Infestation of the undersides of tobacco leaves with nymphs of green peach aphids was used in the assays. Spray distance and volume were optimized using water-sensitive paper to ascertain the best surface coverage. Overlays of the leaves on water agar caused less mortality and greater reproduction than the use of cotton fabric. The relative humidity of the insect-rearing chambers changed with the watering regime for the insect - rearing chambers with cotton fabric; 60% relative humidity was optimal. Relative humidity was not affected by the concentration of agar in the water agar chambers. Applications of the chemical aphicidal standard, Sulfoxaflor, under the optimized conditions exhibited similar times for lethality although the rate was faster with leaves on the cotton fabric than on water agar. These studies establish reproducible and sensitive techniques for assessing the lethality and effects on reproduction of potential aphicidal products.

Establishment of Foliar Application Assays for Developing Natural Herbicides (천연물 제초제 개발을 위한 전식물체 수준의 경엽처리 검정법 확립)

  • Kim, Jae-Deog;Jang, Hyun-Woo;Seo, Bo-Ram;Hwang, Hyun-Jin;Choi, Jung-Sup;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • This study was carried out to establish an improved bioassay system, whole-plant bioassay which is more effective in developing natural herbicides for foliar treatment such as herbicidal essential oils. Two bioassay systems using four weed species (Echinochloa crus-galli, Digitaria sanguinalis, Aeschynomene indica, and Abutilon theophrasti), spraying method and spotting method, were established. Spraying method is applicable if the amount of test compounds is enough, while spotting method is useful for the small amount of test compounds. The initial application rate was desirable at $2,500{\sim}5,000\;{\mu}g\;mL^{-1}$. Herbicidal activities were higher in the NOP treatment when compared to the Tween 20 treatment. To efficiently evaluate volatile compounds such as essential oils, if the compound-treated pots were incubated in dew chamber for about 10hrs, better results were obtained in the degree and stability of herbicidal responses. When the efficiency of bioassay systems established in this study was compared, the spraying method was minimized four times to the conventional method that has beed used for screening of synthetic compounds in KRICT. On the other hand, in the spotting method, screening for development of a natural herbicides was possible even in level of 1/100 test volume and 1/200 amounts of test compound compared to the spraying method.

Occurrence characteristics and management plans of Lactuca scariola L., an ecosystem disturbance plant (생태계교란식물 가시상추의 발생특성과 관리방안)

  • In-Yong Lee;Seung-Hwan Kim;Yong-Ho Lee;Sun-Hee Hong
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.239-246
    • /
    • 2022
  • Lactuca scariola L. is one of ecosystem-disturbance plants that grow everywhere such as roadsides, grasslands, railroads, banks, and fields. L. scariola usually occurs in autumn. It overwinters in rosette form. It flowers and produces seeds in early summer of the next year. Seeds of L. scariola can germinate immediately without dormancy when the temperature is over 20℃. Due to endogenous bacteria in seeds of L. scariola, it has a strong drought tolerance. Thus, it can grow well on roadsides. L. scariola should be controlled as it can result in 60-80% of soybean yield loss at densities above 50 plants m-2. It is advisable to remove L. scariola as it competes with native plants by acting as a pioneer to other ecosystem-disturbance plants. Among various control methods, chemical control is the most effective method that is widely used. Soil treatment with herbicides such as oxyfluorfen EC and pendimethalin EC can inhibit the development of L. scariola. Foliar treatment herbicides glyphosate and glufosinateammonium are widely used. L. scariola is resistant to 2,4-D, dicamba, and MCPA among foliar treatment herbicides. Thus, it is recommended to apply herbicides with different modes of action.

Studies on Increasing the Efficiency of Nitrogen Nutrition (질소영양(窒素營養)의 효율증진(效率增進)에 관(關)한 연구(硏究))

  • Kwack, Pan-Ju
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.151-166
    • /
    • 1969
  • I. Fffects of nitrogen supplying level and culture condition on the top growth aod tubers formation of Ipomoea Batatas. 1) The low level nitrogen (A plot) 3 Milliequivalent per liter of nutrient solution stimulated tuber formation while the high level nitrogen ($B_1\;and\;B_2$ plot) of 10 milliequivalent per liter failed to form tuber though fibrous roots were seen much activated. The suppressive effect of nitrogen on tuber formation in presumed to result from the direct suppressive effect of nitrogen or a certain biocatalystic effect rather than from any indirect effect through the stimulation to growth of tops or the competition with carbohydrates. 2) The addition of milligram urea to nutrient solution stimulated the growth and increased fresh weight and dry weight of the aerial part while suppressed, a little, plant length. 3) The water culture method, which this experiment newly adopted, stimulated plant growth more than the gravel Culture method. And the treatment of low level nitrogen (A plot) in this water culture also saw a considerable degree of tuber formation, as in the case of gravel culture. 4) The foliar application of growth retardant B-nine suppressed the plant length only, with no other recognizable effect. II. Fffects of urea supplying level on the growth of IPOMOEA BATATAS. 1) The higher level of urea which was absorbed tby roots through nutrient solution suppressed top growth, such as plant length, number of leaves and fresh weight. And this can be attributed to the direct absorption of urea which was not ammonificated. 2) Although the higher level of nitrate nitrogen (B plot) made no tuber formation in previous experiment (Report-1), the higher level of urea nitrogen (A plot) made tuber formation possible in this experiment. The ratio of tuber to top was, however, less in higher level of urea than in lower level of urea, and the suppressing effect was larger on tuber than on top. 3) The foliar application of urea stimulated top growth while the higher level of urea absorbed by roots suppressed it, though the amounts of urea supplied in two experiments were same. Ratio of top to roots was larger in foliar application of urea (C plot) and less in root absorption of urea both of higher (B plot) and lower urea levels (A plot). III. Fffects of growth retardant etc. on the growth of IPOMOEA BATATAS in relation to urea application. 1) B-nine (N-dimethyl amino-succinamic acid) is recognized as a growth retardant, suppressed the plant length irrespective of urea levels. The treatment of gibberellin stimulated distinctly plant length, and the combined treatment of gibberellin and B-nine recovered completely the plant length which had been suppressed by B-nine. 2) B-nine increased fresh weight, especially, fresh weight of top both in lower and higher level of The degree of fresh weight increase varied according to concentrations of B-nine, of which the 0.15% of B-nine ($B_1$ plot) was the effective in higher level of urea. The effect of B-nine for increasing fresh weight was the largest in top next in tuber, and the least in fibrous roots. The ratio of fibrous roots to top was always decreased by B-nine application, which the ratio of tuber to top was contrary increased by B-nine in higher level of urea though decreased in lower level of urea. 3) Gibberellin treatment also increased fresh weight but the combined treatment ($B_3$+GA plot) of gibberellin and B-nine was even more effective than any of single treatments. Gibberellin and B-nine proved to be synergistic with fresh weight while reverse with plant length. 4) Considerable influences were abserved mainly in the length of plants and their fresh weight after B-nine treatment. So that B-nine may be reguraded as a metabolic controller rather than as an antimetabolite. 5) The surpressed growth of plants cause by higher level of urea was normalized by B-nine treatment. This fact suggested a further study on the applicability for practical use.

  • PDF