• Title/Summary/Keyword: 경상 누층군

Search Result 35, Processing Time 0.03 seconds

Displacement Analysis of an Excavation Wall using Inclinometer Instrumentation Data, Banyawol Formation, Western Daegu (경사계를 이용한 대구 서부지역 반야월층 굴착 지반의 변위 분석)

  • Ihm, Myeong-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • To analyze lateral displacement of excavation walls exposed during the construction of Subway Line 1 in the Daegu region, inclinometer measurement data for sites D4, D5, and Y6 are investigated from the perspective of engineering geology. The study area, in the Banyawol Formation, Hayang Group, Gyeongsang Supergroup, is in the lower part of bedrock of andesitic volcanics, calcareous shale, sandstone, hornfels, and felsite dykes that are unconformably overlain by soil. The rock mass around the D4 site is classified as RMR-V grade and the maximum lateral displacement of 101.39 mm, toward N34W, was measured at a bedding-parallel fault, at a depth of 12 m. The rock mass around the D5 site is classified as RMR-IV grade and the maximum lateral displacement of 55.17 mm, toward the south, was measured at a lithologic contact between shale and felsite, at a depth of 14 m. The rock mass around the Y6 site is classified as RMR-III grade and the maximum lateral displacement of 12.65 mm, toward S52W, was measured at an unconformity between the soil and underlying bedrocks, at a depth of 7 m. The directions of lateral displacement in the excavation walls are vector sums of the directions perpendicular to the excavation wall and horizontally parallel to the excavation wall. Lateral displacement graphs according to depth in the soil profile show curvilinear trajectories, whereas those in bedrock show straight and rapid-displacement trajectories.

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

Deformation History of the Pohang Basin in the Heunghae Area, Pohang and Consideration on Characteristics of Coseismic Ground Deformations of the 2017 Pohang Earthquake (Mw 5.4), Korea (포항 흥해지역에서 포항분지의 변형작용사와 2017 포항지진(Mw 5.4) 동시성 지표변형 특성 고찰)

  • Ji-Hoon, Kang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.485-505
    • /
    • 2022
  • On November 15, 2017, a Mw 5.4 Pohang Earthquake occurred at about 4 km hypocenter in the Heunghae area, and caused great damage to Pohang city, Korea. In the Heunghae area, which is the central part of the Pohang Basin, the Cretaceous Gyeongsang Supergroup and the Late Cretaceous to Early Paleogene Bulguksa igneous rocks as basement rocks and the Neogene Yeonil Group as the fillings of the Pohang Basin, are distributed. In this paper, structural and geological researches on the crustal deformations (folds, faults, joints) in the Pohang Basin and the coseismic ground deformations (sand volcanoes, ground cracks, pup-up structures) of Pohang Earthquake were carried out, and the deformation history of the Pohang Basin and characteristics of the coseismic ground deformations were considered. The crustal deformations were formed through at least five deformation stages before the Quaternary faulting: forming stages of the normal-slip (Gokgang fault) faults which strike (N)NE and dip at high angles, and the high-angle joints of E-W trend regionally recognized in Yeonil Group and the faults (sub)parallel to them, and the conjugate normal-slip faults (Heunghae fault and Hyeongsan fault) which strike E-W and dip at middle or low angles and the accompanying E-W folds, and the conjugate strike-slip faults dipped at high angles in which the (N)NW and E-W (NE) striking fault sets show the (reverse) sinistral and dextral strike-slips, respectively, and the conjugate reverse-slip faults in which the NNE and NNW striking fault sets dip at middle angles and the accompanying N-S folds. Sand volcanoes often exhibit linear arrangements (sub)parallel to ground cracks in the coseismic ground deformations. The N-S or (N)NE trending pop-up structures and ground cracks and E-W or (W)NW trending ground were formed by the reverse-slip movement of the earthquake source fault and the accompanying buckling folding of its hanging wall due to the maximum horizontal stress of the Pohang Earthquake source. These structural activities occurred extensively in the Heunghae area, which is at the hanging wall of the earthquake source fault, and caused enormous property damages here.

Distribution Characteristics of Geologic Age and Rock Type of Bedrocks at the National Wood Culture Heritage Site by GIS (GIS에 의한 국가지정 목조문화재 기반암류의 지질시대별 및 암층별 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Kim, Yong-Won;Hong, Sei-Sun;Kim, Eun-Kyung
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.347-364
    • /
    • 2015
  • The purpose of the work was carried out to contribute the factors related to geologic realm in the disaster stability evaluation items of the national wood culture heritages. Among the total heritages, the study targets mainly include 304 cases interpreted as a rock type in the geologic map of the bedrocks with GIS interpretation. The cases show the geologic ages, geologic provinces and rock types as the following distribution characteristics. In geologic ages, they are decreasing in the orders of Jurassic, Cretaceous, Quaternary, Precambrian, Age-unknown Cambro-Ordovician Carboniferous and Tertiary. Among the ages, the former fours occupy 285 cases (93.8%) of the targets, which show most of the wood culture heritages. In geologic provinces classified into 15, they are decreasing in the orders of Daebo intrusives, alluvium, Gyeongsang supergroup, Bulgugsa intrusives, Yeongnam massif, and Gyeonggi massif which occupy of predominant distribution 271 cases (89.1%) of them. In rock types of 52, those of 6, which are Jgr, Qa, Kp, Krt+Kav+Kav1+Kav2, Kbgr and GC2, occupy total 182 cases (59.9%) showing distinctly dominant trends from the rest of 46.

K-Ar ages and Geochemistry for Granitic and Volcanic Rocks in the Euiseong and Shinryeong Area, Korea (의성-신령지역의 화강암류 및 화산암류에 대한 K-Ar 연대)

  • Kim, Sang Jung;Lee, Hyun Koo;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.603-612
    • /
    • 1997
  • Cretaceous sedimentary-volcanoclastic formations of the Kyeongsang Supergroup were intruded by granitic rocks in the late Cretaceous and early Tertiary. In the Euiseong and Shinryeong area, these intrusives have various compositions including gabbro, diorite,biotite granite and feldspar porphyry. Associated volcanic rocks consist of two chemically distinct types: the bimodal suite of basalt and rhyolite in the Keumseongsan caldera, and the felsic suite of andesite and rhyolite in the Sunamsan-Hwasan calderas. Most rocks are subalkaline, and follow a typical differentiation path of the calc-alkaline magma. The granitic rocks can be distinguished chemically from the volcanics by high Zr/Y ratios. Differences in Zr/Y and K/Y ratios between the two volcanic suites can be accounted for by mantle source and fractionation. Chondrite-normalized trace element abundances of granitic rocks are depleted in Th and K, whereas those of the Keumseongsan rhyolites are depleted in Sr and Ti. Rb, La and Ce is enriched in rhyolites of the Sunamsan-Hwasan calderas. $Rb-SiO_2$ and Rb-Y+Nb discrimination diagrams suggest that the intrusives and volcanics have a volcanic arc setting. K-Ar ages indicate four plutonic episodes : diorite (89 Ma), granite (66~62 Ma), granite and porphyry (55~52 Ma) and gabbro (52~45 Ma), and two volcanisms : bimodal basaltic and rhyolitic volcanism (71~66 Ma) in the Keumseongsan caldera, and felsic andesitic and rhyolitic volcanism (61~54 Ma) in the Sunamsan-Hwasan calderas. Geochemical and age data thus suggest that the igneous rocks are related to several geologic episodes during the late Cretaceous to early Tertiary.

  • PDF

Genesis and Hydrochemistry of $CO_2$-rich Springs from Kyungpook Province, Korea (경북지역 탄산수의 생성기원과 수리화학적 특성)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.121-136
    • /
    • 2002
  • The $CO_2$-rich springs in the Kyungpook Province has been found at 16 locations. Most of the $CO_2$-rich springs outflow along either fault zones or the geologic boundary between Mesozoic granites and their adjacent rocks. The $CO_2$-rich water samples show a high $CO_2$ concentration ( $P_{CO2}0.46 to 5.21 atm), weak acidic pHs, wide electrical conductivity values ranging from 422 to 2,280 $\mu\textrm{S}$/cm, and high re content. They are classified into the ca-HC $O_3$ type in chemical composition.$\delta$$^{18}$ O and $\delta$$^2$H data indicate that $CO_2$-rich water is meteoric origin. The $\delta$$^{13}$ C values (-1.5$\textperthousand$ to -6.1$\textperthousand$ PDB) suggest that dissolved $H_2$C $O_3$$^{0}$ C $O_3$- are mainly derived from a deep-seated $CO_2$ and carbonate minerals. The thermodynamic equilibrium state between $CO_2$-rich water and major minerals, and hydrochemical characteristics indicate that major source minerals determining the chemical composition of $CO_2$-rich water are carbonate minerals, plagioclase, K-feldspar and Fe-oxides. Under high $CO_2$ pressure and the weak acidic condition, most of the $CO_2$-rich water samples are thermodynamically in the dissolution state with respect to albite and carbonate minerals.

Topography and Soil Characteristics Related to Land Creep in 37 Areas in South Korea (우리나라 37개 땅밀림지의 지질 및 토양 특성)

  • Park, Jae-Hyeon;Seo, Jung Il;Ma, Ho-Seop;Kim, Dongyeob;Kang, Minjeng;Kim, Kidae
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.540-551
    • /
    • 2019
  • This study was conducted to provide basic data for classifying patterns of land creep in 37 areas in South Korea using geological and soil property analyses. Geological time, as it relates to land creep areas in South Korea, had been most impactful for the Gyeongsang Supergroup and its sedimentary bedrock during the Cretaceous period. In this area, perfect ridge cliffs in land creeping areas included 20 plots (approximately 54.0%), while tension cracking areas with ambiguous ridge cliff characteristics included 17 plots (approximately 46.0%). Hesitant slide slope types included 20 plots (approximately 54.0%) within theslide slope of an incident pattern (slide slope figure) in land creeping areas. Colluvial debris types among land creep patterns were the most frequent and included 25 plots (approximately 68.0%). The direct causes of land creep were cutting of foothills, quarrying, land-clearing in mountains, mining exploration, and the creation of burial grounds, all of which added to geological impacts. Among land creeping areas, 27 plots (approximately 73.0%) were the result of man-made activities, and 10 plots (approximately 27.0%) were derived via natural causes such as earthquakes, heavy rainfall, and caving.

Slope Stability for Bridge Access Road on Sedimentary Rocks using Geological Cross Sections (지질단면을 이용한 교량 접속도로 퇴적암 비탈면의 안정성 검토 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.507-512
    • /
    • 2022
  • The subjects of the study are the sedimentary rock slope of the Mesozoic Gyeongsang Supergroup, which has a high risk of failure. The rocks of the slope shall be sandstone, siltstone and dacite, and discontinuities shall develop beddings, shear joints, extension joints, and dacite dyke boundary planes. The type and scale of failure varies depending on the type of rock and the strike/dip of the discontinuities, but the planar failure prevails. Based on the face-mapping data, SMR, physical and mechanical testing of rocks, the critical equilibrium analysis, all representative sections required a countermeasure method because the acceptable safety factor during dry and rainy seasons were far below Fs=1.5 and Fs=1.2. After applying the countermeasure method, both the dry and wet conditions of the slope exceeded the allowable safety factor. In particular, the face-mapping data of the slope-face, the geological cross-sections of several representative sections perpendicular to the slope-face, and the critical equilibrium analysis and the presentation of countermeasure methods that have been reviewed based on them are expected to be reasonable tools for the slope stability.

Interpretation of Physical Weathering and Deterioration Mechanism for Thermal Altered Pelitic Rocks: Ulju Cheonjeon-ri Petroglyph (열변질 이질암의 물리적 풍화작용과 손상메커니즘 해석: 울주 천전리 각석)

  • Chan Hee Lee;Yu Gun Chun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.629-646
    • /
    • 2023
  • Host rock of Cheonjeon-ri petroglyph is shale belonging to the Daegu Formation of Cretaceous Gyeongsang Supergroup. The rocks were hornfelsified by thermal alteration, and shows high density and hardness. The petroglyph forms weathered zone with certain depth, and has difference in mineral and chemical composition from the unweathered zone. As the physical deterioration evaluations, most of cracks on the surface appear parallel to the bedding, and are concentrated in the upper part with relatively low density. Breakout parts are occurred in the upper and lower parts of the petroglyph, accounting for 6.0% of the total area and occurs to have been created by the wedging action of cracks crossing. The first exfoliation parts occupying the surface were 23.8% of the total area, the second exfoliations covered with 9.3%, and the exfoliation parts with three or more times were calculated as 3.4%. It is interpreted that this is not due to natural weathering, and the thermal shock caused by the cremation custom here in the past. As the ultrasonic properties, the petroglyph indicates highly strength in the horizontal direction parallel to bedding, and the area with little physical damage recorded mean of 4,684 m/s, but the area with severe cracks and exfoliations showed difference from 2,597 to 3,382 m/s on average. Physical deterioration to the Cheonjeon-ri petroglyph occurred to influence by repeated weathering, which caused the rock surface to become more severe than the inside and the binding force of minerals to weaken. Therefore, it can be understood that when greater stress occurs in the weathered zone than in the unweathered zone, the relatively weathered surface loses its support and exfoliation occurs.

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.