• Title/Summary/Keyword: 경사형 지대주

Search Result 24, Processing Time 0.025 seconds

Effects of abutment angulation and type of connection on the fracture strength of zirconia abutments (지대주 각도와 연결방식이 지르코니아 지대주의 파절강도에 미치는 영향)

  • Kim, Ho-Seong;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the fracture strength of straight and angled zirconia abutments for internal hex and external hex implants. Materials and methods: Twenty internal hex implants and 20 external hex implants were prepared. The prefabricated straight zirconia abutments and 17-degree-angled zirconia abutments were connected to those 40 implants. The specimens were classified into 4 groups depending on the connection type and abutment angulation; internal hex implant/straight abutment, group INS; internal hex implant/angled abutment, group INA; external hex implant/straight abutment, group EXS; external hex implant/angled abutment, group EXA. All specimens were loaded at a 30-degree angle with a crosshead speed of 1 mm/min using universal testing machine. The fracture loads were analyzed using 2-way ANOVA and independent t-test (${\alpha}=.05$). Results: The mean fracture load for INS was 955.91 N, 933.65 N for INA, 1267.20 N for EXS, and 1405.93 N for EXA. External hex implant showed a significantly higher fracture load, as compared to internal hex implant (P < .001). No significant differences in fracture loads were observed between the straight and angled abutment in internal hex implants (P = .747) and external hex implants (P = .222). Internal hexes of abutments were fractured horizontally in internal connection implants, while lingual cervical neck portions were fractured in external connection implants. Conclusion: The zirconia abutments with external hex implants showed significantly higher fracture strength than those with internal hex implants. However there was no difference in fracture strength between the straight and 17-degree-angled zirconia abutment connected to both implant systems.

Zirconia ceramic fixed dental prosthesis with all-on-4 concept implants for irradiated maxilla: A case report (방사선 조사된 상악골에서 all-on-4 임플란트에 의해 지지되는 지르코니아 고정성 보철물 수복 증례)

  • Choi, Eun-Joo;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.2
    • /
    • pp.218-224
    • /
    • 2017
  • The implant-supported fixed dental prosthesis in irradiated maxilla needs meticulous treatment planning due to low bone healing capacity. All-on-4 concept implantation can reduce the number of implants to be placed avoiding bone grafting procedure. Conventionally, prefabricated angled abutments for tilted implants have been used. However, in this case, it was replaced with computer-aided design and computer-aided manufacturing (CAD/CAM) abutment. This case report described all-on-4 concept implantation and fabrication of CAD/CAM zirconia fixed dental prostheses using CAD/CAM titanium abutments.

Finite Element Stress Analysis of Bone Tissue According to the Implant Connection Type (2종의 임플란트 내부결합구조체에 따른 치조골상 유한요소응력 분석)

  • Byun, Ook;Jung, Da-Un;Han, In-Hae;Kim, Seong-Ryang;Lee, Chang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.259-271
    • /
    • 2013
  • The purpose of this study was to make the stress distribution produced by simulated different load under two types of internal connection implant system (stepped and tapered type) by means of 3D finite element analysis, The finite element model was designed with the parallel placement of the one fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st molar. Two models were loaded with 200 N magnitude in the vertical direction on the central position of the crown, the 1.5 mm and 3 mm buccal offset point from the central position of the fixture. The oblique load was applied at the angle of $30^{\circ}$ on the crown surface. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual dimension. The results were as follows; 1. The loading conditions of two internal connection implant systems (stepped and tapered type) were the main factor affecting the equivalent bone strain, followed by the type of internal connections. 2. The stepped model had more mechanical stability with the reduced max. stress compared to $11^{\circ}$ tapered models under the distributed oblique loading. 3. The more the contact of implant-abutment interface to the inner wall of implant fixture, the less stress concentration was reduced.

3-D FEA of three different single tooth abutments : Cement-retained Vs Screw-retained (3종의 단일치아 수복용 지대주의 삼차원 유한요소법적연구 : 시멘트 유지헝 대 나사 유지형)

  • Lee, Jung-Min;Kim, Yung-Soo;Kim, Chang-Whe;Kim, Yong-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.269-288
    • /
    • 1999
  • 현재 골 유착성 임플랜트는 안전하고 유용한 보철 수복 분야의 하나로 자리잡아 가고있다. 과거 완전 무치악 환자에게 있어서 저작 기능의 회복이란 면에 중점을 두었던 경향에서 현재 골유착 임플랜트의 높은 성공률에 의해 부문 무치악, 단일치 수복에 까지 다양하게 사용되고 있다. 특히 심미성과 인접치의 손상을 가하지 않는다는 면에서 단일치 수복에서 골유착 임플랜트 치료에 관심이 모아지고 있다. 단일치 수복에 있어서 심미성이 중요한 문제로 대두되면서 이런 수복에 사용될 수 있는 다양한 계통의 임플랜트들이 개발되어 사용되고 있다. 이중 가장 기본적인 Branemark 계통의 CeraOne 지대주, 최근에 개발된 전부도재 지대주인 CerAdapt 전부주조 지대주인 UCLA 계통등은 높은 성공률을 보이며 많이 사용되고 있다. 임상가들에 의해 나사유지형 보철물이 착탈성이란 관점에서 선호되고 있다. 시멘트유지형 보철물에서는 나사공이 없는 온전한 교합면을 유지한다는 면과 교합력을 받는 면적에 있어서 더 넓은 면을 가진다는 점등 더 많은 장점을 가진다고 주장하는 사람도 있다. 임상가들의 기호에 의해 선택되어지는 나사 유지형과 시멘트 유지형에 있어서 교합력이 야기하는 하중하에서 각각의 응력 분포를 분석할 필요성이 요구되었다. 이 연구는 단일치 수복에 사용되는 CeraOne, CerAdapt UCLA 계통에서 각각의 나사 유지형과 시멘트유지형에서의 응력분포를 삼차원 유한요소법으로 분석하고 상부 구조물에 가해지는 수직하중, 수평 하중, 경사 하중에 의해 야기되는 응력을 비교 분석한 것이다. 본 연구의 연구 결과는 다음과 같다. 1. CeraOne, CerAdapt, UCLA 지대주 모두 시멘트유지형보다 나사유지형에서 응력집중이 컸다. 2. CeraOne 시멘트유지형인 1번 모델에서 응력분산이 유리하였고, UCLA 나사 유지형인 6번 모델에서 가장 불리하였다. 3. 모든 모델에서 고정체 경부에서 가장 큰 응력 집중이 있었고 이것은 UCLA 지대주에서 가장 컸다. 4. 상부 구조물에서 주된 응력의 집중은 교합면에서 일어났다. 5. 골은 상부 피질골, 즉 고정체경부와 만나는 부위에서 가장 큰 응력의 집중이 일어났으며 수평, 경사 하중시 응력집중 양상은 힘을 가한 쪽의 반대쪽 고정체 경부에 응력이 집중되는 양상을 보였다. 6. 전체 모델과 골, 고정체 모두에서 수평 하중과 경사 하중시 보다는 수직 하중시 더 적은 응력값을 보였다.

  • PDF

Strains of abutment and bones on implant overdentures (임플란트 피개의치에서 지대주와 골의 변형률에 관한 연구)

  • Kim, Myung-Seok;Heo, Seong-Joo;Koak, Jai-Young;Kim, Sung-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.222-231
    • /
    • 2009
  • Statements of the problem: Over the past decades, conventional complete dentures were used for various patients although they have incomplete function. Overdentures using dental implants could help the improvement of denture function. Purpose: The purpose of this study was to compare the strains of abutment and bone on implant overdenture between splinted and unsplinted type of prosthesis. Additionally, the strain values of parallel placed implant model and unparallel placed implant model were compared. Material and methods: Two acrylic resin model were prepared and two implants were placed at the canine positions in each model. In the first model, two implant were placed parallel. In the second model, two implants were placed with 10 degree labiolingual divergence. Two types of abutment were connected to the fixtures alternatively. One was splint type of Hader bar, the other was unsplint type of ball abutment. Overdentures were fabricated with corresponding attachment systems and seated on abutments. Strains of abutments and labial bone simulants were measured with electric resistance strain gauges when static load from 100 N to 200 N were applied to overdentures. Results: 1. Splinted type of overdentures using bar and clip showed higher absolute strain values. But the strain was compressive and the load was shared by two implants(P<.05). 2. Unsplinted type overdentures using ball and O-ring showed low absolute strain values(P<.05). 3. Labially inclined implant showed higher tensile strain values in unsplinted type of prosthesis than in splinted type of prosthesis. Lingually inclined implant showed rather low strain values under load(P<.05). 4. Non parallel implant model showed higher absolute strain values than parallel placed implant model comprehensively(P<.05).

Finite Element Analysis of Stress Distribution on Supporting Bone of Cement Retained Implant by Oblique Loading (경사하중에 따른 시멘트 유지형 임플란트 지지골의 유한요소법 응력 분포)

  • Lee, Myung-Kon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.343-349
    • /
    • 2014
  • The dental osseointegration implant should be enough to endure occlusion load and it's required to have efficient design and use of implant to disperse the stress into bones properly. Solidworks as a finite element analysis program for modeling and analysis of stress distribution was used for the research. The simple crown model was designed on applying conjoined condition with tightening torque of 20 Ncm of a abutment screw between a cement retained implant abutment and a fixture. A $45^{\circ}$ oblique loading from lingual to buccal side on buccal cusps of crown and performed finite element analysis by 100 N of external load. The results by a analysis for stress distribution of supporting bones of fixture were as below. The von Mises stress was concentrated on the upper side of supporting compact bone regardless of the diameters and lengths of fixture, and the efficiency result of stress reduction was increase of fixture's diameter than it's length. Therefore, it's effective to use wider fixture as possible to the conditions of supporting jaw bone.

THE INFLUENCE OF ABUTMENT SCREW TIGHTENING TIMING AND DLC COATING OF CONICAL CONNECTION IMPLANT SYSTEM (일체형 지대주의 Diamond Like Carbon 표면 처리와 나사 조임 시기가 풀림 현상에 미치는 영향)

  • Kim, Ki-Hong;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.209-216
    • /
    • 2008
  • Statement of problem: It is difficult about assessing the loosening tendency of conical connection type implant after cyclic loading with diamond like carbon coating one-piece abutments, and also about the retightening effect. Purpose: This study was performed to investigate the influence of one-piece abutment screw retightening after $5.0{\times}10^{4}$ cyclic loading and Diamond like coating Material and methods: Thirty two ITI implant were divided to 4 groups. Group 1,3-titanium abutment, group 2,4 - diamond like carbon coated abutment. Group 1,2 - $20.0{\times}10^{4}$ cyclic loading after $5.0{\times}10^{4}$ cyclic loading, Group 3,4- after $20.0{\times}10^{4}$ Cyclic loading. After cyclic loading, periotest values were taken and removal torque values of abutments were measured with a digital torque gauge. Results: 1. The removal torque of group 2 after $5.0{\times}10^{4}$ cyclic loading is slightly greater than the other groups but not significantly higher than others (P>0.05). 2. The final removal torque values after $20.0{\times}10^{4}$ cyclic loading of group 1 is bigger than group 3, and group 2 is bigger than group 4, but not significantly higher (P>0.05). 3. The final removal torque values after $20.0{\times}10^{4}$ cyclic loading of all groups are not significantly different (P>0.05).

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.

A 3-dimensional finite element analysis of tapered internal connection implant system (Avana SS $III^{(R)}$) on different abutment connections (경사형 내부연결 임플란트 시스템 (SS $III^{(R)}$)에서 지대주 형태에 따른 응력분포의 3차원 유한요소 분석)

  • Lee, Hye-Sung;Kim, Myung-Rae;Park, Ji-Man;Kim, Sun-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the stress distribution characteristics of four different abutment connections on SS-$III^{(R)}$ fixture under occlusal loading, using 3-dimensional finite element method. Materials and methods: The fixture of SS-$III^{(R)}$ (Osstem, Korea) with 4 mm diameter and 11.5 mm length and 4 types of abutments were analyzed; Solid, Com-Octa, ComOcta Gold, and Octa abutment. The models were placed in the area of first molar in the mandible. The 4 loading conditions were; (1) the vertical loading of 100 N on the central fossa, (2) the vertical loading of 100 N on the buccal cusp, (3) the $30^{\circ}$ inclined loading of 100 N to lingual side on the central fossa, and (4) the $30^{\circ}$ inclined loading of 100 N to the lingual side on the buccal cusp. The 3G.Author program was used, the von-Mises stress was calculated and the stress contours were plotted on each part of the implant systems and the surrounding bone structures. Results: Regardless of abutment types and loading conditions, higher stress concentration was observed at the cortical bone. In cancellous bone, the highest stress was observed at apical portion and the maximum stress occurred at the implant neck. The higher internal stress was observed in the fixtures than in the bone. The lowest stress was observed at loading condition 1 and the stress concentration was also lower than any other loading conditions. Conclusion: Within the limitation of the result of this study, it seems that the abutment connection type does not affect much on the stress distribution of bone structure.