• Title/Summary/Keyword: 경사하중

Search Result 324, Processing Time 0.033 seconds

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

The Spatial Characteristics of Vertical Accretion Rate in a Coastal Wetland - In case of Sunchon bay estuarine marsh, south coast of Korea - (해안습지 성장률의 공간적 특성에 관한 연구 - 순천만 염하구 해안습지를 사례로 -)

  • Park, Eui-Joon
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.153-168
    • /
    • 2000
  • An estuarine marsh is semi -inclosed inlets, located between coastal and terrestrial environment. The sediment transport by river and tide through tidal river and vertical accretion by sediment accumulation are important processes in estuarine marsh. An analysis of the vertical accretion rate at various time scale is important work for understanding and managing coastal environments. The purpose of this study is to determin the spatial characteristics of vertical accretion rate in an estuarine marsh, Sunchon Bay, in the southern coastal region of Korean peninsula. The methods of analysis are sedimentation rate by individual tidal cycle, annual accretion rate, concentration of total suspended load in water column. Spatial characteristics of sedimentation rate by individual tidal cycle was investigated using 30 filter paper traps. Sedimentation rate by individual tidal cycle at levee edge was higher than that at back marsh. The sedimentation rate decreased with distance from estuarine front. Levee effect and proximity to the turbidity maximum zone result in a higher sedimentation rate in the levee edge. There is a weak relation-ships between tidal regime and sedimentation rate by individual tidal cycle. Spatial cahracteristics of annual accretion rate was investigared using 30 artificial marker plots. Annual accretion rate at back marsh($1.5{\sim}3.5cm/yr$) was higher than that at tidal river levee edge($0.8{\sim}3.0cm/yr$). Total suspended load (TSL) concentrations in water column also indicate this spatial characteristics of annual accretion rate. TSL concentration in water column leaving the vegetation part dramatically decreased. There is a very strong relationship between the concentration of suspended load and accretion rate. These results indicate that annual accretion rate is controlled by vegetation cover and proximity to the turbidity maximum zone. This difference of spatial characteristics of vertical accretion rate ar various time-scale was due to the fact that surface sediment of levee edge was eroded by tide and other factors. The major findings are as follows. First, the spatial characteristics of vertical accretion rate are different from various time-scale. Second, the major mechanism for the vertical accretion rate in this region is suspended load trapping by vegetation. Third, this region is primarily a depositional regime over the time-scale of the present data Fourth, this estuarine marsh is accreting at rates beyond other area.

  • PDF

Experimental study on the ground subsidence due to the excavation of a shallow tunnel (경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.761-778
    • /
    • 2017
  • The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

A Study on the Vertical Bearing Capacity of Batter Piles Subjected to Vertical Load (연직하중을 받는 경사말뚝의 연직지지력에 관한 연구)

  • 성인출;이민희;최용규;권오균
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • In this study, based on the relationship of the vertical force - settlement of batter piles obtained by pressure chamber model tests, the vertical bearing capacity of vertical and batter piles according to the increase of pile inclination was analyzed. A model open - ended steel pipe pile with the inclination of 5$^\circ$, 10$^\circ$ and 15$^\circ$ was driven into saturated fine sand with relative density of 50 %, and the static compression load tests were performed under each confining pressure of 35, 70 and 120 kPa in pressure chamber. The vertical bearing capacity of pile obtained from pressure chamber tests increased with the pile inclination. In the case of the inclination of 5$^\circ$, 10$^\circ$, 15$^\circ$, increasing ratios of pile bearing capacity were 111, 121, 127 ~ 140 % of vertical bearing capacity respectively. In the case of the inclination of above 20$^\circ$, the model tests could not be performed because of pile of pile head during compressive loading on the pile head.

Three-dimensional finite element analysis according to the insertion depth of an immediately loaded implant in the anterior maxilla (상악 전치부 즉시하중 임플란트의 식립 깊이에 따른 삼차원 유한요소 분석)

  • Park, Cheol-Woo;Kim, Sung-Hun;Yeo, In-Sung;Yoon, Hyung-In;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effects of the insertion depth of an immediately loaded implant on the stress distribution of the surrounding bone and the micromovement of the implant using the three-dimensional finite element analysis. Materials and methods: A total of five bone models were constructed such that the implant platform was positioned at the levels of 0.00 mm, 0.25 mm, 0.50 mm, 0.75 mm, and 1.00 mm depth from the crest of the cortical bone. A frictional coefficient of 0.3 and the insertion torque of 35 Ncm were simulated on the interface between the implant and surrounding bone. A static load of 178 N was applied to the provisional prosthesis with a vertical load in the axial direction and an oblique load at $30^{\circ}$ with respect to the central axis of the implant, then a finite element analysis was performed. Results: The implant insertion depth significantly affected the stress distribution on the surrounding bone. The largest micromovement value of the implant was $39.34{\mu}m$. The oblique load contributed significantly to the stress distribution and micromovement in comparison to the vertical load. Conclusion: Increasing the implant insertion depth was advantageous in dispersing the concentrated stress in the cortical bone and did not significantly affect the micromovement associated with early osseointegration failure.

A three-dimensional finite element analysis of osseointegrated implant on stress distribution in different abutment designs and fixture diameters (각종 지대주 및 고정체 종류에 따른 골유착성 임플랜트의 응력 분포에 관한 삼차원 유한요소분석적 연구)

  • Kwon, Ho-Beom;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.699-721
    • /
    • 1996
  • 브로네마르크가 골유착성 임플랜트를 소개한 이래로, 현재 골유착성 임플랜트에 의한 치료는 안전하고 안정적인 방법으로 여겨지고 있다. 골유착성 임플랜트를 이용한 초기의 치료는 무치악 환자의 저작기능 회복에 중점을 두어 왔다. 그러나 현재는 환자와 시대의 요구에 따라서 심미성이 주요한 관심사가 되었다. 그래서 표준 지대주보다 더 심미적인 지대주 시스템들이 개발되었다. 다양한 직경의 임플랜트 고정체에 관한 임상가들의 요구에 의해 직경 이 큰 고정체가 생산되기 시작했으며, 5mm의 직경을 갖는 고정체가 그 예이다. 골유착성 임플랜트를 사용하여 보철치료를 할 때, 골과 고정체의 계면은 보철물과 지대주에 가해지는 교합력을 인접골에 전달하게 되며, 이것은 계면에 생물학적인 반응을 야기할 수 있다. 임플랜트의 형태는 골흡수와 같은 바람직하지 않은 반응을 일으키지 않도록 고안되어야 하며, 임플랜트 자체가 교합력을 견딜 수 있어야 한다. 그러므로 골유착성 임플랜트 시스템을 임상에 사용하려고 할 때 이것의 생역학적 분석은 반드시 필요하다. 본 연구에서는 삼차원 유한요소분석적 방법을 사용하여 3.75mm직경을 갖는 고정체에 표준 지대주, 이세티콘 지대주, 마이러스콘 지대주를 연결한 모델과 5mm 직경을 갖는 고정체에 표준 지대주를 연결한 모델에 각각 수직하중, 경사하중, 수평하중을 가했을 때의 응력분포를 비교하였다. 본 연구의 결과는 다음과 같다. 1. 모든 모델에서 금나사의 경부, 금원주, 지대주에 응력의 집중이 일어났다. 2. 임플랜트 고정체에서는 고정체 상방 2/3, 그리고 지대주와 접촉하는 고정체 상면에서 응력의 집중이 관찰되었다. 3. 골에서는 상부 피질골에 응력의 집중이 관찰되었으며, 해면골에서는 두드러진 응력의 집중을 보인 부위는 없었으나 고정체의 근단부 주위 해면골에서의 응력값이 비교적 높았다. 4. 5mm 직경의 고정체를 사용하지 않은 모델 중에서, 표준 지대주를 사용한 경우가 가장 응력분산에 유리하였으며 마이러스콘 지대주를 사용한 경우가 가장 불리하였다. 5. 3가지 하중 조건하에서 수평하중과 경사하중의 경우가 수직하중의 경우보다 더 높은 응력값이 관찰되었다. 6. 응력값은 골에서보다 임플랜트 내부에서 훨씬 높았다.

  • PDF

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Effect of Wind Load on Pile Foundation Stability in Solar Power Facilities on Slopes (풍하중이 경사지 태양광 발전시설의 기초 안정성에 미치는 영향 분석)

  • Woo, Jong-Won;Yu, Jeong-Yeon;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.47-60
    • /
    • 2023
  • At present, in South Korea, there is a growing concern regarding solar power facilities installed on slopes because they are prone to damage caused by natural disasters, such as heavy rainfall and typhoons. Each year, these solar power facilities experience soil erosion due to heavy rainfall and foundation damage or detachment caused by strong wind loads. Despite these challenges, the interaction between the ground and structures is not adequately considered. Current analyses primarily focus on the structural stability under external loads; the overall facility site's stability-excluding the solar structures-in relation to its surrounding slopes is neglected. Therefore, in this study, we use finite-difference method analysis to simulate the behavior of the foundation and piles to assess changes in lateral displacement and bending stress in piles, as well as the safety factor of sloped terrains, in response to various influencing factors, such as pile diameter, spacing between piles, pile-embedding depth, wind loads, and dry and wet conditions. The analysis results indicate that pile spacing and wind loads significantly influence lateral displacement and bending stress in piles, whereas pile-embedding depth strongly influences the safety factor of sloped terrains. Moreover, we found that under certain conditions, the design criteria in domestic standards may not be met.

Seismic Performance of Landing Pier with Batter Pile (경사말뚝이 있는 잔교식 안벽의 내진 성능 평가)

  • 권오순;장인성;박우선
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.92-99
    • /
    • 2002
  • 1995년 일본 고베지진 이후 우리나라에서도 지진에 대한 연구가 활발히 이루어지고 있으며, 현재 국내 여러 기간시설에 대한 내진안전성 평가와 내진설계가 실시되고 있다. 국내 기존 항만시설에 대해서도 내진 안정성 평가가 수행되고 있으며 현재계획ㆍ시공되고 있는 항만에서도 내진설계가 반영되고 있다. 중요한 항만시설물 중 하나인 잔교식 안벽은 연직말뚝과 경사말쪽을 조합하여 사용하고 있으나, 최근 내진설계에서 경사말뚝이 지진과 같은 동적 하중에 취약하다는 이유로 사용에 제한을 받고 있다. (중략)

  • PDF