• Title/Summary/Keyword: 경사밀링가공

Search Result 10, Processing Time 0.035 seconds

Selection of Machining Inclination Angle of Tool Considering Tool Wear in High Speed Ball End Milling (고속 볼앤드밀링에서 공구마모를 고려한 공구의 가공경사각 선정)

  • Ko, Tae-Jo;Jung, Hoon;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.135-144
    • /
    • 1998
  • High speed machining is a key issue in die and mold manufacturing recently. Even though this technology has great potential of high productivity. tool wear accelerated by high cutting speed to the hardened materials is other barrier. In this research, we attempted to reduce tool wear by considering tool inclination angle between tool and workpiece. The boundary lines describing machined sculptured surfaces were represented by both of cutting envelop condition and the geometric relationship of successive tool paths. Chip cross section, and cutting length could be obtained from the calculated cutting edge and the rotational engagement angle. From the simulation results, machining inclination angle of tool of $15^\circ$ was good enough from the point of tool wear and cutting force, and this value was verified through the cutting experiment of high speed ball end milling.

  • PDF

공작기계의 곡선형 경로에 대한 오차모델을 이용한 제어기설계

  • 길형균;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.189-189
    • /
    • 2004
  • 본 논문은 CNC 밀링머신을 이용한 절삭가공 등 2축시스템의 위치제어 시스템을 대상으로 한다. 기존의 제어방식은 크게 독립축제어와 상호결합제어로 분류할 수 있다. 독립축제어는 두 축의 통합된 운동을 각각의 독립된 축에 대한 추적제어를 수행하여 원하는 공구경로의 위치 정밀성을 향상시키고자 하는 것이고, 상호결합제어는 지령경로에 대한 추적성능보다는 현재의 윤곽오차를 감소시키는 방향으로 제어입력을 인가하여 가공윤곽의 오차를 감소시키는데 주목적이 있다. 또한 최근의 작업공정의 고속화 경향은 윤곽오차를 감소시키면서도 추적성능이 우수한 제어방식을 요구하고 있다.(중략)

  • PDF

A Study Quantitative Analysis of Surface Roughness for Precision Machining of Sculptured Surface (자유곡면의 정밀가공을 위한 표면거칠기의 정량적 해석에 관한 연구)

  • 김병희;주종남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1483-1495
    • /
    • 1994
  • A quantitative analysis of a surface roughness for a precision machining of a sculptured surface in milling process is treated under superposition theory in this paper. The geometrical surface rouhgness is calculated as a function of feed per tooth, path interval, radii of tool and cutting edge, and radii of curvatures of workiece. Through machining experiments in a 3-axis machining center, we confirmed the adequacy of the adequacy of the analysis. While cutter mark is neglegible in ball endmilling, it is significant in flat endmilling. When feed per tooth is very small, flat endmilling gives superior finish to ball endmilling. In flat endmilling, cutting condition and cutter path should be strategically chosen to balance the cutter mark height and cusp height.

Comparison of precision Machinabilities and Cutting Time in Inclined Milling Process (노우즈반경에 따른 엔드밀의 가공특성 및 절삭시간의 비교)

  • 김병희;최영석;주종남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2114-2121
    • /
    • 1995
  • Surface generation model of three types of endmills is introduced to analyse the cutting mechanism of an endmill more accurately. Superposition method is introduced to define the effective cusp including the effects of cutter mark. Through the comparison of three endmills, it is shown that the ball-nose endmill is superior to the ball endmill and the flat endmill for inclined milling process in 3-or 5-axis machining modes. By using the objective function minimizing the machining time, appropriate nose radius is selected for various cutter radiuses and cutter inclination angles.

Analysis of the Machinability of a Precision Machining of Molds/Dies by Using Jig and 3-Axis M/C (3축 머시닝센터와 치구를 이용한 금형의 정밀가공시의 특성해석)

  • Kim, B.H.;Chu, C.N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.119-129
    • /
    • 1995
  • In this paper, the inclined endmilling process with a 3-axis machining center using inclined jigs is introduced for the purpose of reducing overall Dies/Molds machining time and improving the machining accuracies. In order to analyze the cutting mechanism of a given endmill more accurately, the unification of the cutting mechanism model of 3-different- kind endmills is carried out by using a nose radius as a parameter. By adding radial runouts as a parameter which influences on surface roughness, the superposition method which defines the effective cusp height superposing the cutter mark height and the conventional cusp height is advanced. And 3-D suface topography predicted in this paper looks like the surface normally observed in practice. Through machining experiments, the adequacy of the superposition method was confirmed.

  • PDF

NC End Milling Strategy of Triangulation-Based Curved Surface Model Using Steepest Directed Tree (최대경사방향 트리를 이용한 삼각형요소화 곡면모델의 NC 엔드밀링가공에 관한 연구)

  • 맹희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2089-2104
    • /
    • 1995
  • A novel and efficient cutter path planning method for machining intricately shaped curved surfaces, called the steepest directed tree method, is presented. The curved surface is defined by triangular facets, the density and structure of which are determined by the intricacy and form accuracy of the surface. Geometrical form definition and recognition of the topological features are used to connect the nodes of the triangulated surface meshes for the successive and interconnected steepest pathways, which makes good use of end milling characteristics. The planetary cutter centers are determined to locate along smoothly changing paths and then the height values of the cutter are adjusted to avoid surface interference. Several machined examples of intersecting and intricate surfaces are presented to illustrate the benefits of the new approach. It is shown that due to more consistent geometry matching between cutter and surface(in comparison with the current CC Cartesian method) surface finish can be typically improved. Moreover, the material in concave fillets which is difficult to be removed by ball mills can be removed efficiently. The built-in positioning of cutter to avoid interference runs minutely in the sharp and discontinuous regions. The steepest upward movement of the cutter gives a stable dynamic cutting state and allows increase in the feedrate and spindle speed while remaining the stable cutting state.

A Study on the Relationship of Surface Shape and Tool Runout in the Ball-End Milling (경사면 가공에서 공구의 런아웃과 표면 형상과의 관계에 관한 연구)

  • 박희범
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.591-596
    • /
    • 1999
  • Due to the development of CNC machining centers and the complexity of machined part geometry, the ball-end milling became the most widely used the cutting process. Generally, the tool runout defined as the eccentricity of a rotating tool set in the holder involved the spindle runout and the problem of tool runout generated to remove the workpiece is a main factor affecting the machining accuracy. In this paper, the relationship of tool runout(zero-to-peak, P-K) and surface shape on the change of cutting conditions is studied and it is proposed the probability of prediction of surface shape from the in-process tool runout measurements with high response displacement sensor in the ball-end milling

  • PDF

Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy (티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석)

  • Ye, Dong-Hee;Koo, Joon-Young;Park, Young-Koon;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

Development of Method for Manufacturing Freeform EPS Forms Using Sloped-LOM Type 3D Printer (Sloped-LOM 방식 3D 프린터를 이용한 비정형 EPS 거푸집 제작 공법 개발)

  • Ahn, Heejae;Lee, Dongyoun;Ji, Woojong;Lee, Woojae;Cho, Hunhee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.171-181
    • /
    • 2020
  • Recently, free-formed construction technology is becoming a new measure of representing technological superiority and sociocultural ingenuity. However, the CNC processing technology utilizing the existing wood and iron form has limitations in terms of the manufacturing time and material cost. Therefore, in this study, the method and process of manufacturing free-formed EPS form using S-LOM-based 3D printing technology were suggested. Furthermore, through the mock-up test, a comparative analysis of the manufacturing time and precision with CNC milling technology was conducted. The results show that S-LOM-based 3D printing technology has reduced manufacturing time about 57.4% compared to CNC milling technology during the free-formed EPS form manufacturing process. In addition, compared to the design drawings, the maximum error value was 20.5mm, proving the applicability of S-LOM-based 3D printing technology. The results of this study are expected to contribute to the improvement of S-LOM method and the activation of S-LOM method by verifying the applicability of S-LOM-based 3D printing technology.