In the recent times, a personalized travel path recommendation based on both travelogues and community contributed photos and the heterogeneous meta-data (tags, geographical locations, and date taken) which are associated with photos have been studied. The travellers using social media leave their location history, in the form of paths. These paths can be bridged for acquiring information, required, for future recommendation, for the future travellers, who are new to that location, providing all sort of information. In this paper, we propose a personalized travel path recommendation scheme, based on social life log. By taking advantage, of two kinds of social media, such as travelogue and community contributed photos, the proposed scheme, can not only be personalized to user's travel interest, but also be able to recommend, a travel path rather than individual Points of Interest (POIs). The proposed personalized travel route recommendation method consists of two steps, which are: pruning POI pruning step and creating travel path step. In the POI pruning step, candidate paths are created by the POI derived. In the creating travel path step, the proposed scheme creates the paths considering the user's interest, cost, time, season of the topic for more meaningful recommendation.
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.753-756
/
2014
기존의 웹 지도 서비스는 방문 횟수가 많은 장소를 알기 어렵고, 사용자에게 여행 경로를 추천하는 기능 또한 찾기 어려웠다. 따라서 본 논문에서는 사진 촬영 분포를 기반으로 한 여행 경로 추천 시스템을 제안한다. 사진이 많이 촬영된 곳이 여행객이 많이 방문한 곳이며, 유명한 장소일 것이라고 가정하여 사진 촬영 분포를 기반으로 여행 경로를 추천하고자 한다. 여행 경로를 추천하기 위해 사진 데이터의 위치 값을 수집하고, 사진 데이터의 위치 값을 기반으로 사진 촬영 분포를 시각화하여 지도 위에 나타낸다. 또한, 여행 지역 내 사진이 많이 촬영된 장소를 유명한 장소로 선정하여 이를 경유하는 여행 경로를 추천한다. 사용자는 시스템을 통해 유명한 장소를 쉽게 인식할 수 있고, 편리하게 여행 경로를 계획할 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2013.07a
/
pp.75-76
/
2013
본본 논문에서는 Space Syntax 이론에 기반하여 여성의 안전한 여가활동 경로를 추천하는 어플리케이션을 제안한다. 이 어플리케이션은 접근성, 지역 간 상호관계 등을 바탕으로 한 계산을 통해 추천경로를 만든다. 이는 일반적인 네비게이션이 가지는 최단시간, 최단거리 탐색과는 차별성을 가지며, 안전을 최우선으로 한 경로를 탐색한다. 오늘날 늘어난 여가시간에 따라 사람들의 레저 활동이 많아지며, 따라서 여성의 경우도 참여율에 높아진다. 이 때 여성의 경우 안전적 문제에 있어 레저 활동 장소까지의 경로를 추천하고자 한다. 본 논문에서는 제안하는 레저활동과 여성안전에 관련한 어플리케이션은 다양한 위험요소를 염두에 두어 계산을 통해 안전한 경로를 제공하는 알고리듬으로 주관적 선택사항을 적용하여, 자기맞춤형 경로를 선택 가능하게 한다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.247-249
/
2001
한 사이트 내에서 제공되는 정보가 많아질수록 사용자는 많은 실패를 거친 후 자신이 원하는 정보에 도달하게 된다. 사용자가 어떤 사이트에 자주 찾아오도록 하기 위해서는 적은 노력으로도 원하는 정보에 도달할 수 있도록 도움을 주는 웹 페이지 추천 기법이 필요하다. 기존의 연관규칙이나 순차패턴 기법은 모든 규칙을 찾으므로 필요한 개수 이상의 연산을 한다. 연산 개수가 많아지면 연산 시간이 길어져 갱신되는 데이터베이스를 매번 적용시켜 계산하기가 어렵다. 제안하는 기법은 현재 사용자의 경로 정보를 기준으로 데이터베이스를 변형시키고, 기존 사용자의 경로정보가 저장된 데이터베이스를 검색하여 경로 정보의 패턴을 분석한다. 분석된 결과 중 가장 연관성이 높다고 판단되는 웹 페이지를 현재 사용자에게 추천한다.
전자상거래 사이트 내에서 제공되는 정보가 많아질수록 사용자는 많은 실패를 거친 후 자신이 원하는 정보에 도달하게 된다. 사용자가 어떤 사이트에 자주 찾아오도록 하기 위해서는 적은 노력으로도 원하는 정보에 도달할 수 있도록 도움을 주는 웹 페이지 추천기법이 필요하다. 이 기법은 사용자 프로파일 중 경로 정보의 패턴을 분석한 후 분석된 결과를 바탕으로 사용자에게 현재 있는 페이지와 가장 연관성이 높다고 판단되는 웹 페이지를 연관규칙을 응용한 방법을 이용하여 추천한다.
Lee, Hee Jun;Lee, Won Sok;Choi, In Hyeok;Lee, Choong Kwon
Smart Media Journal
/
v.9
no.1
/
pp.45-50
/
2020
With the development of deep learning, studies using artificial neural networks based on deep learning in recommendation systems are being actively conducted. Especially, the recommendation system based on RNN (Recurrent Neural Network) shows good performance because it considers the sequential characteristics of data. This study proposes a travel route recommendation system using GRU(Gated Recurrent Unit) and Session-based Parallel Mini-batch which are RNN-based algorithm. This study improved the recommendation performance through an ensemble of top1 and bpr(Bayesian personalized ranking) error functions. In addition, it was confirmed that the RNN-based recommendation system considering the sequential characteristics in the data makes a recommendation reflecting the meaning of the travel destination inherent in the travel route.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.2
/
pp.185-190
/
2006
Most systems in ubiquitous computing analyze context information of users which have similar propensity with demographics methods and collaborative filtering to provide personalized recommendation services. The systems have mostly used static context information such as sex, age, job, and purchase history. However the systems have limitation to analyze users' propensity accurately and to provide personalized recommendation services in real-time, because they have difficulty in considering users situation as moving path. In this paper we use users' moving path of dynamic context to consider users situation. For the prediction accuracy we complete with a path completion algorithm to moving path which is inputted to RSOM. We train the moving path to be completed by RSOM, analyze users' moving pattern and predict a future moving path. Then we recommend the nearest product on the prediction path with users' high preference in real-time. As the experimental result, MAE is lower than 0.5 averagely and we confirmed our method can predict users moving path correctly.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.115-118
/
2023
본 논문에서는 지속되던 코로나-19 바이러스로 인한 일상의 제약이 점차 완화되는 추세 속에서 이전에 영위하지 못하던 개개인의 여가생활을 지원하기 위해 개발하였다. 제약이 완화되면서 많은 사람들이 국내 여행의사가 점차 증가된다고 분석된다. 지금 우리의 일상 속에는 인간이 직접 의사결정을 하는 부분들이 많이 줄어들었다. 공공데이터를 이용한 자동화된 경로 추천 시스템을 통해 사용자들은 의사결정의 단계 없이 제공되는 경로를 지도 API를 통해 시각적으로 이용하며 나들이 준비 과정을 간소화 시킬 것으로 예상된다.
Park, Byeong-Seok;Kang, Seong-Hun;Cho, Hyun-Woo;Jeong, Young-Sik
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1549-1552
/
2015
최근 스마트폰을 비롯한 스마트 디바이스의 급격한 보급화가 이루어짐에 따라 추천가 시스템과 같은 개인화 서비스에 관한 연구가 활발히 진행되고 있다. 그러나 이러한 서비스는 활용 방안이 광범위함에도 불구하고 마케팅 등의 특정 분야에 한정되어 있거나 저수준의 QoS를 제공하는 정도에 머물러 있어 국내의 추천가 시스템은 아직 도입단계에 불과하다. 추천가 시스템은 추천할 물품과 같은 객체의 기본 및 평가 정보를 텍스트 형태의 메타 정보로 나타낸다. 이러한 메타 정보 기반 필터링에 의해 주변 경로 및 취향이 고려되지 않은 결과를 사용자에게 제공하고 있다. 이에 사용자와 상호작용하여 건강이나 취향, 식사 이력, 통계 등을 고려해 메뉴를 추천해주는 최적화된 알고리즘 연구가 요구된다. 본 논문에서는 최적화된 내용 기반 필터링을 활용해 사용자의 입력 패턴과 취향을 파악하여 메뉴를 추천해주는 시스템인 UBRS을 제안하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.424-426
/
2020
최근 스마트폰, 스마트 워치, 네비게이션 등과 같은 GPS가 내장된 기기가 늘어남에 따라 사용자의 위치 정보를 기반으로 하는 다양한 형태의 위치 기반 서비스와 다양한 목적에 따른 경로 추천 알고리즘이 제안되고 있다. 대부분의 연구들은 단순히 위치 및 거리 요소만 고려하기 때문에 시간의 측면에서 효율적이지 못하다는 단점이 있다, 이러한 문제를 효율적으로 해결하기 위해 시간과 공간을 모두 고려한 사용자 맞춤형 경로 추천 알고리즘을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.