• Title/Summary/Keyword: 경로주행

Search Result 503, Processing Time 0.048 seconds

Cost-effective Sensor-based Scalable Automated Conveyance System (저비용 센서 기반의 확장 가능한 자동 운반 시스템)

  • Kim, Junsik;Jung, Woosoon;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • The important goal of the unmanned vehicle technology is on controlling the direction and speed of the vehicle with information acquired from various sensors, without the intervention of the driver, until the vehicle reaches to its destination. In this paper, our focus is on developing an unmanned conveyance system by exploiting low-cost sensing technology for indoor factories or warehouses, where the moving range of the vehicle is limited. To this end, we propose an architecture of a scalable automated conveyance system. Our proposed system includes a number of unmanned conveyance vehicles, and the efficient control mechanism of the vehicles without neither conflicts nor deadlock between the vehicles being simultaneously moved. By implementing the real prototype of the system, we successfully verify the efficiency and functionality of the proposed system.

A correction of synthetic aperture sonar image using the redundant phase center technique and phase gradient autofocus (Redundant phase center 기법과 phase gradient autofocus를 이용한 합성개구소나 영상 보정)

  • Ryue, Jungsoo;Baik, Kyungmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.546-554
    • /
    • 2021
  • In the signal processing of synthetic aperture sonar, it is subject that the platform in which the sensor array is installed moves along the straight line path. In practical operation in underwater, however, the sensor platform will have trajectory disturbances, diverting from the line path. It causes phase errors in measured signals and then produces deteriorated SAS images. In this study, in order to develop towed SAS, as tools to remove the phase errors associated with the trajectory disturbances of the towfish, motion compensation technique using Redundant Phase Center (RPC) and also Phase Gradient Autofocus (PGA) method is investigated. The performances of these two approaches are examined by means of a simulation for SAS system having a sway disturbance.

Study on Dowel-Bar Optimum Position of Jointed Concrete Pavement Using 3-D FEM Analysis (3차원 유한요소해석을 이용한 줄눈콘크리트 포장의 다웰바 최적배치에 대한 연구)

  • Chon, Beom Jun;Hong, Seong Jae;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.135-141
    • /
    • 2010
  • Dowel bar in the jointed concrete pavement has been designed and constructed by Foreign standard and experience in Korea. The behavior of dowel bar is explored based in analyze of 3-Dimension Finite Element Method. To evaluate behavior of dowel bar compared Timoshenko theory and 3-Dimensional Finite Element Method. Based on the 3-Dimension Finite Element Method analyze the dowel-bar optimum position that can reduce deflections of slabs by considering wheel path distributions was suggest in this study.

GPS Error Filtering using Continuity of Path for Autonomous Mobile Robot in Orchard Environment (과수원 환경에서 자율주행로봇을 위한 경로 연속성 기반 GPS오정보 필터링 연구)

  • Hyewon Yoon;Jeonghoon Kwak;Kyon-Mo Yang;Byong-Woo Gam;Tae-Gyu Yeo;Jongyoul Park;Kap-Ho Seo
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • This paper studies a GPS error filtering method that takes into account the continuity of the ongoing path to enhance the safety of autonomous agricultural mobile robots. Real-Time Kinematic Global Positioning System (RTK-GPS) is increasingly utilized for robot position evaluation in outdoor environments due to its significantly higher reliability compared to conventional GPS systems. However, in orchard environments, the robot's current position obtained from RTK-GPS information can become unstable due to unknown disturbances like orchard canopies. This problem can potentially lead to navigation errors and path deviations during the robot's movement. These issues can be resolved by filtering out GPS information that deviates from the continuity of the waypoints traversed, based on the robot's assessment of its current path. The contributions of this paper is as follows. 1) The method based on the previous waypoints of the traveled path to determine the current position and trajectory. 2) GPS filtering method based on deviations from the determined path. 3) Finally, verification of the navigation errors between the method applying the error filter and the method not applying the error filter.

Transit Mobility Measures on the Seoul Multimodal Network (대중교통망 이동성지표 개발(네트워크 분석을 중심으로))

  • Noh, Hyun-Soo;Doh, Tcheol-Woong;Kim, Won-Keun;Cho, Chong-Suk;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.7-17
    • /
    • 2005
  • Transportation is from an individual mobility. Various efforts to propose specific values or the individual mobility have been conducted in diverse transportation environment. However, mobility studies for multimodal public transportation are rare especially on not the range of line but area. This study propose a method to calculate transit mobility indices as expanding mobility analysis from point-to-point to area-to-area, considering access time to transit facility, running time and transfer time of passengers. To extract mobility indices, we included walking as a lowest category of mode and set passenger car as a competitive mode to transit mode. This study propose three public transportation mobility indices as 1) how competitive public transportation facility is offered against passenger car 2) how convenient transit mode including walking is provided against passenger car from origin to destination and 3) how many various paths are presented to support passenger's travel between regions. These indices are tested on the Seoul metropolitan area with 10 lines of urban rail and about 420 lines of bus. In addition, we proposed two political applications of proposed mobility indices to increase public transportation mobility between two regions and to maximize the mobility of study area when a line is added in the area.

Autonomous Mobile Robot System Using Adaptive Spatial Coordinates Detection Scheme based on Stereo Camera (스테레오 카메라 기반의 적응적인 공간좌표 검출 기법을 이용한 자율 이동로봇 시스템)

  • Ko Jung-Hwan;Kim Sung-Il;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.26-35
    • /
    • 2006
  • In this paper, an automatic mobile robot system for a intelligent path planning using the detection scheme of the spatial coordinates based on stereo camera is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity map obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth information can be detected. Finally, based-on the analysis of these calculated coordinates, a mobile robot system is derived as a intelligent path planning and a estimation. From some experiments on robot driving with 240 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the mobile robot and the objects, and relative distance between the other objects is found to be very low value of $2.19\%$ and $1.52\%$ on average, respectably.

Study of Robust Position Recognition System of a Mobile Robot Using Multiple Cameras and Absolute Space Coordinates (다중 카메라와 절대 공간 좌표를 활용한 이동 로봇의 강인한 실내 위치 인식 시스템 연구)

  • Mo, Se Hyun;Jeon, Young Pil;Park, Jong Ho;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.655-663
    • /
    • 2017
  • With the development of ICT technology, the indoor utilization of robots is increasing. Research on transportation, cleaning, guidance robots, etc., that can be used now or increase the scope of future use will be advanced. To facilitate the use of mobile robots in indoor spaces, the problem of self-location recognition is an important research area to be addressed. If an unexpected collision occurs during the motion of a mobile robot, the position of the mobile robot deviates from the initially planned navigation path. In this case, the mobile robot needs a robust controller that enables the mobile robot to accurately navigate toward the goal. This research tries to address the issues related to self-location of the mobile robot. A robust position recognition system was implemented; the system estimates the position of the mobile robot using a combination of encoder information of the mobile robot and the absolute space coordinate transformation information obtained from external video sources such as a large number of CCTVs installed in the room. Furthermore, vector field histogram method of the pass traveling algorithm of the mobile robot system was applied, and the results of the research were confirmed after conducting experiments.

Sensor-Based Path Planning for Planar Two-identical-Link Robots by Generalized Voronoi Graph (일반화된 보로노이 그래프를 이용한 동일 두 링크 로봇의 센서 기반 경로계획)

  • Shao, Ming-Lei;Shin, Kyoo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6986-6992
    • /
    • 2014
  • The generalized Voronoi graph (GVG) is a topological map of a constrained environment. This is defined in terms of workspace distance measurements using only sensor-provided information, with a robot having a maximum distance from obstacles, and is the optimum for exploration and obstacle avoidance. This is the safest path for the robot, and is very significant when studying the GVG edges of highly articulated robots. In previous work, the point-GVG edge and Rod-GVG were built with point robot and rod robot using sensor-based control. An attempt was made to use a higher degree of freedom robot to build GVG edges. This paper presents GVG-based a new local roadmap for the two-link robot in the constrained two-dimensional environment. This new local roadmap is called the two-identical-link generalized Voronoi graph (L2-GVG). This is used to explore an unknown planar workspace and build a local roadmap in an unknown configuration space $R^2{\times}T^2$ for a planar two-identical-link robot. The two-identical-link GVG also can be constructed using only sensor-provided information. These results show the more complex properties of two-link-GVG, which are very different from point-GVG and rod-GVG. Furthermore, this approach draws on the experience of other highly articulated robots.

A Study on the Estimation of the V2 X-Rate Ratio for the Collection of Highway Traffic Information (고속도로 교통정보 수집을 위한 V2X 차량비율 추정연구)

  • Na, Sungyong;Lee, Seungjae;Ahn, Sanghyun;Kim, Jooyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • Transportation is gradually changing into the era of V2X and autonomous cars. Accurate judgement of traffic conditions is an important indicator of route choice or autonomous driving. There are many ways to use probes car such as taxis, as a way to identify accurate traffic conditions. These methods may vary depending on the characteristics of the probe vehicle, and there is a problem with the cost. The V2X vehicle can solve these problems and collect traffic information in real time. If all vehicles are of V2X vehicle, these issues are expected to be resolved briefly. However, if the communication information of a V2X vehicle is represented by a traffic representative in a traffic with only V2X, the traffic information of some V2X vehicles will be able to collect traffic information. To accomplish this, a virtual network and transport were created and various scenarios were performed through SUMO simulations. It has been analyzed that 3-5 % of V2 vehicles are capable of representative the road traffic characteristics. In the future, various follow-up studies are planned.

Position Estimation of Autonomous Mobile Robot Using Geometric Information of a Moving Object (이동물체의 기하학적 위치정보를 이용한 자율이동로봇의 위치추정)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.438-444
    • /
    • 2004
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using the a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Since the equations are based or the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot. The Kalman filter scheme is applied for this method. its performance is verified by the computer simulation and the experiment.