• Title/Summary/Keyword: 경로주행

Search Result 503, Processing Time 0.032 seconds

Autonomous Drone Navigation in the hallway using Convolution Neural Network (실내 복도환경에서의 컨벌루션 신경망을 이용한 드론의 자율주행 연구)

  • Jo, Jeong Won;Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.936-942
    • /
    • 2019
  • Autonomous driving of drone indoor must move along a narrow path and overcome other factors such as lighting, topographic characteristics, obstacles. In addition, it is difficult to operate the drone in the hallway because of insufficient texture and the lack of its diversity comparing with the complicated environment. In this paper, we study an autonomous drone navigation using Convolution Neural Network(CNN) in indoor environment. The proposed method receives an image from the front camera of the drone and then steers the drone by predicting the next path based on the image. As a result of a total of 38 autonomous drone navigation tests, it was confirmed that a drone was successfully navigating in the indoor environment by the proposed method without hitting the walls or doors in the hallway.

GPS 구간 검지 방식 기반의 Network 설계를 통한 교통정보 수집 및 제공

  • 김재민
    • Information and Communications Magazine
    • /
    • v.21 no.5
    • /
    • pp.70-79
    • /
    • 2004
  • 최적 경로 서비스를 제공하기 위해서는 구간 통행속도, 구간 통행시간, 회전 정보, 혼잡도 등과 같은 교통정보가 필요하다. 또한, 고객에게 신뢰성 있는 최적 경로를 제공하기 위해서는 실시간 교통정보 수집은 반드시 필요하며, 이러한 실시간 교통정보 수집 방법들에 대한 고찰과 검토가 선행되어야 한다. 기존의 교통정보 수집방법을 살펴보면 지점검지 방식의 경우, 수집되는 정보가 검지기 설치 지점의 지점속도(Spot Speed)이므로 해당 링크를 주행한 통행속도(통행시간)의 대표값으로 채택하기에는 다소 무리가 있으며 구간검지 방식의 경우, 일반적으로 급격한 교통류 변동에 따른 대기행렬 검지가 늦다는 단점이 있다.(중략)

Intelligent System based on Command Fusion and Fuzzy Logic Approaches - Application to mobile robot navigation (명령융합과 퍼지기반의 지능형 시스템-이동로봇주행적용)

  • Jin, Taeseok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1034-1041
    • /
    • 2014
  • This paper propose a fuzzy inference model for obstacle avoidance for a mobile robot with an active camera, which is intelligently searching the goal location in unknown environments using command fusion, based on situational command using an vision sensor. Instead of using "physical sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data. In this paper, "command fusion" method is used to govern the robot motions. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. We describe experimental results obtained with the proposed method that demonstrate successful navigation using real vision data.

Direction detection and autonomous mobile robot using LED lighting-based indoor location recognition system (LED 조명 기반 실내위치 인식 시스템을 이용한 이동로봇의 방향 검출 및 자율주행)

  • Bang, Jae Hyeok;Park, Su Man;Yi, Keon Young
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1298-1299
    • /
    • 2015
  • 이동 로봇의 자기 위치 인식 방법으로 GPS를 많이 이용하지만 건물 내부공간에서는 위성신호 수신 장애가 있기 때문에 GPS 사용이 어렵다. 이에 대한 대안으로 다양한 형태의 실내 측위 기술에 관한 연구가 진행되어왔다. 최근에는 WiFi를 이용한 방법이 일부 상용화 되고 있으나 정밀도가 3~5m라는 한계가 있으며, LED 조명을 이용한 방법은 실용화 단계에 이르지는 못했지만 많은 연구가 진행되고 있다. 당 연구실에서도 LED조명을 기반으로 한 실내위치 인식 시스템을 개발하였으며, 지난 연구에서는 이를 이용한 이동로봇의 자율주행을 연구하였다. 본 연구에서는 지난 연구에 덧붙여 두개의 수신부를 이용하여 로봇의 방향인식오류 개선 및 이동 로봇의 자율주행을 보여주고자 한다. 제시된 시스템은 이동로봇, 조명제어장치 그리고 컴퓨터로 구성된다. 이동로봇은 상용화된 마이크로 마우스에 탑재된 조명신호 수신장치를 통하여 자신의 위치와 방향을 감지하며, 컴퓨터와의 Wi-Fi 통신으로 자신의 위치를 컴퓨터에 전송하거나 위치 명령을 수신한다. 컴퓨터에서는 수신 받은 이동로봇의 위치를 실시간으로 화면에 표시하며, 이동로봇에 전달할 위치명령을 사용자가 입력하는 기능을 제공한다. 사용자가 이동경로를 설정한 후 이동로봇으로 명령을 보내면 로봇은 자신의 위치와 목적지를 비교하며 자율주행을 하게 된다. 실험을 통하여 확인한 결과 지난연구의 방향인식의 문제점이 해결되어 제시된 시스템으로 실내공간에서도 이동로봇의 자율주행이 원만히 이루어짐을 확인하였다.

  • PDF

A Study on the Recognition of Numerals for AGV Navigation Control (AGV 주행제어를 위한 숫자인식에 관한 연구)

  • 박영만;박경우;안동순
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • This study is a research on character recognition based on image processing, using only color tape to mark guidelines instead of magnetic tape or electric wire used by existing AGV. AGV must follow given courses, and stop recognizing signs such as marks and numbers that indicate destinations. In this study. marks to stop AGV employed blue characters of the same font and size as those of number plates. Yellow driving lines and blue numeric characters were marked in corridors. AGV ran ing the characteristics of colors and detecting lines, and temporarily stopped recognizing numbers of 100% through DP pattern matching. This study presented the image processing technique and the result of operating AGV.

  • PDF

An algorithm for autonomous driving on narrow and high-curvature roads based on AVM system. (좁고 곡률이 큰 도로에서의 자율주행을 위한 AVM 시스템 기반의 알고리즘)

  • Han, Kyung Yeop;Lee, Minho;Lee, SunWung;Ryu, Seokhoon;Lee, Young-Sup
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.924-926
    • /
    • 2017
  • 본 논문에서는 좁고 곡률이 큰 도로에서의 자율 주행을 위한 AVM 시스템 기반의 알고리즘을 제안한다. 기존의 전방을 주시하는 모노/스테레오 카메라를 이용한 차선 인식 방법을 이용한 자율주행 알고리즘은 모노/스테레오 카메라의 제한된 FOV (Field of View)로 인해 좁고 곡률이 큰 도로에서의 자율 주행에 한계가 있다. 제안하는 알고리즘은 AVM 시스템을 기반으로 하여 이 한계를 극복하고자 한다. AVM 시스템에서 얻은 영상을 차선의 색상 정보를 이용해 차선의 영역을 이진화 한다. 이진화 영상으로부터, 차량의 뒷바퀴 주변의 관심영역을 시작으로 재귀적 탐색법을 이용하여 좌, 우 차선을 검출한다. 검출된 좌, 우 차선의 중앙선을 차량의 경로로 삼고 조향각을 산출해 낸다. 제한하는 알고리즘을 실제 차량에 적용시킨 실험을 수행하였고, 운전면허 시험장의 코스를 차선의 이탈없이 주행 가능함을 실험적으로 확인하였다.

Efficient navigation control of a Remote Controllable Mobile Robot (원격제어 이동로봇의 효율적 주행제어)

  • Jung Ji bong;Lee Sang-sik;Shin Wee-jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.160-168
    • /
    • 2000
  • In this paper, we study how the remote controllable mobile robot which could come to many via points with FLC(Fuzzy Logic Control) efficiently. The fabricated robot stop after the movement of single path method by four kinds of commands (forward, backward, turn left, turn right). To reduce disadvantages of this driving type, this paper reduce via points to goal position base on map which get from senor, let robot drive via point to via point on optimized path. An algorithm for the avoidance of unexpected obstacles by FLC is developed. And these algorithms are confirmed by computer simulations

  • PDF

A Shortest Path Algorithm Considering Directional Delays at Signalized Intersection (신호교차로에서 방향별 지체를 고려한 최적경로탐색 연구)

  • Min, Keun-Hong;Jo, Mi-Jeong;Kho, Seung-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2010
  • In road network, especially in urban area, inefficiency of travel time is caused by signal control and turn maneuver at intersection and this inefficiency has substantial effects on travel time. When searching for the shortest path, this inefficiency which is caused by turn maneuver must be considered. Therefore, travel time, vehicle volume and delay for each link were calculated by using simulation package, PARAMICS V5.2 for adaptation of turn penalty at 16 intersections of Gangnam-gu. Turn penalty was calculated respectively for each intersection. Within the same intersection, turn penalty differs by each approaching road and turn direction so the delay was calculated for each approaching road and turn direction. Shortest path dealing with 16 intersections searched by Dijkstra algorithm using travel time as cost, considering random turn penalty, and algorithm considering calculated turn penalty was compared and analyzed. The result shows that by considering turn penalty searching the shortest path can decrease the travel time can be decreased. Also, searching the shortest path which considers turn penalty can represent reality appropriately and the shortest path considering turn penalty can be utilized as an alternative.

Parking Path Planning For Autonomous Vehicle Based on Deep Learning Model (자율주행차량의 주차를 위한 딥러닝 기반 주차경로계획 수립연구)

  • Ji hwan Kim;Joo young Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.110-126
    • /
    • 2024
  • Several studies have focused on developing the safest and most efficient path from the current location to the available parking area for vehicles entering a parking lot. In the present study, the parking lot structure and parking environment such as the lane width, width, and length of the parking space, were vaired by referring to the actual parking lot with vertical and horizontal parking. An automatic parking path planning model was proposed by collecting path data by various setting angles and environments such as a starting point and an arrival point, by putting the collected data into a deep learning model. The existing algorithm(Hybrid A-star, Reeds-Shepp Curve) and the deep learning model generate similar paths without colliding with obstacles. The distance and the consumption time were reduced by 0.59% and 0.61%, respectively, resulting in more efficient paths. The switching point could be decreased from 1.3 to 1.2 to reduce driver fatigue by maximizing straight and backward movement. Finally, the path generation time is reduced by 42.76%, enabling efficient and rapid path generation, which can be used to create a path plan for autonomous parking during autonomous driving in the future, and it is expected to be used to create a path for parking robots that move according to vehicle construction.

Lane Change Methodology for Autonomous Vehicles Based on Deep Reinforcement Learning (심층강화학습 기반 자율주행차량의 차로변경 방법론)

  • DaYoon Park;SangHoon Bae;Trinh Tuan Hung;Boogi Park;Bokyung Jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.276-290
    • /
    • 2023
  • Several efforts in Korea are currently underway with the goal of commercializing autonomous vehicles. Hence, various studies are emerging on autonomous vehicles that drive safely and quickly according to operating guidelines. The current study examines the path search of an autonomous vehicle from a microscopic viewpoint and tries to prove the efficiency required by learning the lane change of an autonomous vehicle through Deep Q-Learning. A SUMO was used to achieve this purpose. The scenario was set to start with a random lane at the starting point and make a right turn through a lane change to the third lane at the destination. As a result of the study, the analysis was divided into simulation-based lane change and simulation-based lane change applied with Deep Q-Learning. The average traffic speed was improved by about 40% in the case of simulation with Deep Q-Learning applied, compared to the case without application, and the average waiting time was reduced by about 2 seconds and the average queue length by about 2.3 vehicles.