• Title/Summary/Keyword: 경로손실

Search Result 637, Processing Time 0.02 seconds

Experimental Analyses of Delay Spread and Path Loaa of 2 GHz Wave Proppagation in a Building (건물내 2 GHz 전파전파의 지연확산과 경로손실 특성의 실험적 분석)

  • Kwon, Oh-Geug;Ha, Won;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.11A
    • /
    • pp.1613-1619
    • /
    • 2000
  • 이 논문에서는 전파재널 측정 시스템을 이용하여 건물내 무선 채널의 전파특성인 실효 시간지연 확산과 경로손실을 측정하고 분석한 결과를 제시한다. 구성된 측정 시스템은 미끄럼 상관기를 이용한 대역확산 채널 측정 시스템에서 2 GHz에서 동작하며 3 m 의 분해능을 갖는다. 건물내 무선 채널 특성의 측정환경은 송신 안테나와 수신 안테나가 같은 층에 있을때, 서로 다른 층에 있을때, 그리고 사무실 안에 같이 위치할 때의환경으로구분하여 실험한다.

  • PDF

Measurement of 18GHz Radio Propagation Characteristics in Subway Tunnel for Train-Wayside Multimedia Transmission (지하철 터널에서의 18GHz 무선영상신호 전파특성 측정)

  • Choi, Kyu-Hyoung;Seo, Myung-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.364-369
    • /
    • 2012
  • This paper presents an experimental study on the radio propagation characteristics in subway tunnel at 18GHz frequency band which has been assigned to video transmission between train and wayside. The radio propagation tests are carried out in the subway tunnel of Seoul Metro using the antenna and communication devices of the prototype video transmission system. The measurement results show that 18GHz radio propagation in subway tunnel has smaller path loss than that of general outdoor radio environment. It is also cleared that the arch-type tunnels have smaller radio propagation losses than rectangular tunnels, and single track tunnels have smaller pass loss than double track tunnels. From the measurements, the radio propagation coverage is worked out as 520 meters. The curved tunnels which cannot have LOS communication between transmitter and receiver have large pass losses and fluctuation profile along distance. The radio propagation coverage along curved tunnels is worked out as 300 meters. These investigation results can be used to design the 18GHz radio transmission system for subway tunnel by providing the optimized wayside transmitter locations and handover algorithm customized to the radio propagation characteristics in subway tunnels.

Development of a Simulator for Radio Propagation Path Loss in Tunnel at 18GHz (터널환경에서 18GHz 대역신호의 전파경로손실 예측 시뮬레이터 개발)

  • An, Tae-Ki;Kim, Back-Hyun;Nam, Myung-Woo;Lee, Young-Seock;Jeong, Sang-Guk;Oh, Myung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1796-1802
    • /
    • 2011
  • In this paper, the radio propagation path loss prediction simulator in tunnel was developed. It used a image theory method for analysing precise radio propagation path. And it can predict radio propagation path loss in straight and curved tunnels. The simulator can plot realtime radio propagation paths using various parameters which was input by user. And it can simulate from changing transmitter and receiver positions. The predicted path loss of simulator was compared with the measurements in Chunhyun tunnel and confirmed the validity.

A Routing Algorithm for Minimizing Packet Loss Rate in High-Speed Packet-Switched Networks (고속의 패킷 교환망에서 패킷 손실율을 최소화하기 위한 경로 제어 알고리즘)

  • 박성우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.66-74
    • /
    • 1994
  • Gradient projection (GP) technique is applied for solving the optical routing problem (ORP) in high speed packet switched networks. The ORP minimizing average network packet loss probability is non-convex due to packet losses at intermediate switching nodes and its routing solution cannot be directly sought by the GP algorithm. Thus the non-convex ORP is transformed into a convex problem called the reduced-ORP (R-ORP) for which the GP algorithm can be used to obtain a routing solution. Through simulations, the routing solution of the R-ORP is shown to be a good approximation to that of the original ORP. Theoretical upper bound of difference between two (ORP and R-ORP) routing solutions is also derived.

  • PDF

Wave Propagation Characteristics for Mobile Communications beyond 3G in Microcellular Environments (마이크로셀룰라 환경에서의 차세대 이등 통신을 위한 전파 전파 특성)

  • Jo Han-Shin;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.430-439
    • /
    • 2006
  • This paper presents the a measured path-loss characteristics for mobile communications beyond 3G in microcellular residential area and street microcell at 3.4, 5.3, and 6.4 GHz band signals. The residential area is divided into two sections, one of which is composed of fifteen-story appartment buildings. The other section comprises four-story houses. The street microcell is classified line-of-sight(LOS) and nonline-of-sight(NLOS) areas. Both residential areas have standard deviations independent of the residential area classification, whereas the path loss exponents in the apartments is higher than those in area for same frequencies. A two-ray model is applied to analyse the path-loss charateristics in LOS areas. In LOS areas, an empirical breakpoint, whose distance is 6 percent shorter than a theorical breakpoint, is founded. Further, a sudden power level drop occurs at a transition point from LOS region to NLOS area. Path loss exponent is found to be significantly higher for non-LOS region than for LOS region. The power level drop due to corner loss and path-loss exponents both increase as the distance between the transmitter and the corner increases.

Measurement and analysis of indoor corridor propagation path loss in 5G frequency band (5G 주파수 대역에서의 실내 복도 전파 경로손실 측정 및 분석)

  • Kim, Hyeong Jung;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.688-693
    • /
    • 2022
  • In this paper, channel propagation path loss was measured in building corridors for frequency bands of 3.7 GHz and 28 GHz, which are used in 5G mobile communication, and compared and analyzed with CI (Close-In) and FI (Floating-Intercept) channel models. To measure the propagation path loss, the measurement was performed while moving the receiver (Rx) from the transmitter (Tx) by 10 m. As a result of the measurement, the PLE (Path Loss Exponent) values of the CI model at 3.7 GHz and 28 GHz were 1.5293 and 1.7795, respectively, and the standard deviations were analyzed as 9.1606 and 8.5803, respectively. In the FI model, 𝛼 values were 79.5269 and 70.2012, 𝛽 values were -0.6082 and 1.2517, respectively, and the standard deviations were 5.8113 and 4.4810, respectively. In the analysis results through the CI model and the FI model, the standard deviation of the FI model is smaller than that of the CI model, so it can be seen that the FI model is similar to the actual measurement result.

A Position Revision Method by Path-Loss Factor in GIS based Wireless Sensor Node Deployments (GIS기반 무선 센서노드 배치에서 경로손실을 고려한 위치 보정 방법)

  • Bae, Myung-Nam;Kwon, Hyuk-Jong;Kang, Jin-A;Lee, In-Hwan
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.111-121
    • /
    • 2011
  • In this paper, we proposes a sensor node positioning algorithm that utilizes the geo-spatial elements and considers the factors to represent the propagation loss generated by the various obstacles in the urban wireless environments. First, we measures the propagation loss about the radio frequencies in major road of the urban, and defines the correlation between the measured loss and the environment information for the road and its surrounding get from Urban GIS. Secondly, through the utilization of the loss-environment correlation, we describes the detailed instruction for requiring the radio coverage decision and deploy system implementation for the wireless sensor node in urban. By the consideration of interference factor by the building and the linear structure of road, we can evaluate the path loss below 5dB RMS error. And, we proposes the way to revise the sensor node deployment based on the corelation and the measured path loss.

Radio Propagation Characteristics of Different Frequency Bands in Multiple Paths According to Antenna Position in an Indoor Lobby Environment (실내 로비 환경에서 안테나 위치에 따른 다중 경로의 서로 다른 주파수 대역의 전파 특성)

  • Seong-Hun Lee;Byung-Lok Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The radio propagation characteristics of the 6, 10, and 17 GHz frequency bands in multiple paths in an indoor lobby environment were analyzed. The line-of-sight (LOS) and non-LOS (NLOS) paths were measured from a distance of 2-16 m (0.5 m intervals) from the transmitting to the receiving antenna positions. For basic transmission losses, three parameters were compared using the floating intercept path loss model corresponding to the path. For a root mean square delay spread, the measurement results were compared for cumulative probabilities of 10, 50, and 90%. Propagation loss and propagation delay occurred in all measured frequencies owing to the existence of pillars and an unusual lobby structure. Thus, a measurement scenario for an indoor lobby environment and the provision of standard measurement data was proposed. The results may facilitate research on the radio propagation characteristics of 5G and millimeter-wave bands in indoor lobby environments with various structures.

An Analysis of Propagation Model in Half-Canyon Structure with Slope using Multi-Ray Model (경사면을 갖는 반-협곡 구조에서 다중-광선 모델을 사용한 전파 모델 해석)

  • Lee, Hwa-Choon;Choi, Tae-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.173-178
    • /
    • 2020
  • A multi-ray model has been used to interpret radio transmission losses in half-canyon structures with slope and to formulate a multi-ray propagation model depending on the angle of slopes. The cut-off angles for the third and fourth paths, which are the slope-sided reflection paths of the transmission and reception radio waves determined by the inclined angles of the slope, were calculated with the height and location of the transmitter and receiver. To predict transmission losses in an inclined plane environment, the embankment environment where the actual slope exists was modeled and simulated to calculate the loss of propagation transmission, and the radio wave transmission loss was confirmed by the measurement for the frequency band 1 to 6 GHz. Simulation results and measurement results showed similar trends in radio transmission loss, and radio transmission loss predictions and measurement results for various terrain information can be used in the design of radio propagation service.

Improving TCP Performance through Pre-detection of Route Failure in Mobile Ad Hoc Networks (Ad Hoc 망에서 경로단절 사전감지를 통한 TCP 성능향상)

  • Lee Byoung-Yeul;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.900-910
    • /
    • 2004
  • Route failure is mainly caused by mobility of mobile host in ad hoc networks. Route failure, which may lead to sudden packet losses and delays, is losing the route from source to destination. In this situation, TCP assumes that congestion has occurred within the network and also initiates the congestion control procedures. Congestion control algorithm provides the means for the source to deal with lost packets. TCP performance in ad hoc environments will be degraded as TCP source cannot distinguish congestion from route failure. In this paper, we propose TCP-P as pre-detection approach to deal with route failure. TCP-P freezes TCP through pre-detection of route failure. Route failure information of the proposed mechanism is obtained not by routing protocol but by MAC protocol. The intermediated node, obtaining route failure information by its MAC layer, relays the information to TCP source and lets TCP source stop the congestion control algorithm. Results reveal that TCP-P responding with proactive manner outperforms other approaches in terms of communication throughput under the presence of node mobility.