• Title/Summary/Keyword: 경량 기포 콘크리트

Search Result 159, Processing Time 0.027 seconds

Mock-up Test of Improved Concrete Binders for Lightweight Foamed concrete (경량기포 콘크리트용 개량분체의 Mock-up 실험평가)

  • Choi, Sung-Yong;Jeong, Kwang-Bok;Kim, Gi-Cheol;Kim, Seong-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.853-856
    • /
    • 2008
  • Lightweight foamed concretes are mainly used in apartment building construction for building room floor insulation, sound proof and height difference adjustment, etc. However, existing lightweight foamed concretes have problems like volume reduction by foam removal and excessive crack occurrence, etc, and for compensation, they developed improved concrete binders for lightweight foamed concrete with special characteristics by adding admixture materials used in concrete manufacturing. Therefore, this study reviewed the possibility of its practical use by analyzing all the engineering characteristics after producing imitation member proposed as actual binders and piling lightweight foamed concrete as improved lightweight foamed concrete binder through prior study, the results are as follows. Plain in which various pulverulent materials are mixed showed about 230mm of flow value, satisfying the target flow value, and at 100mm member, about 4mm of settlement occurred, showing a settlement depth reduction effect double the OPC. On strength, OPC showed highest value, but the three levels all showed strengths above the specified value of KS standard 0.5 grade. From the analysis of drying shrinkage member crack, plain, about 0.1mm, was shown very excellent against drying shrinkage crack.

  • PDF

Effect of Metakaolin on the Strength Properties of Lightweight Aggregate Cellular Concrete (경량골재기포콘크리트에서의 메타카올린 강도 증가 효과)

  • Hwang, Eun-A;Lee, Haeng-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.489-490
    • /
    • 2009
  • In this study, the experiment was carried out to investigate the effect of metakaolin on the compressive strength of lightweight aggregate cellular concrete. For this purpose, five level replacement ratio of metakaolin were selected.

  • PDF

Evaluation of Flow and Engineering Properties of High-Volume Supplementary Cementitious Materials Lightweight Foam-Soil Concrete (하이볼륨 혼화재 경량기포혼합토 콘크리트의 유동성 및 공학적 특성 평가)

  • Shim, Sang-Woo;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yun, In-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • The present study prepared lightweight foam-soil concrete mixtures classified into three groups. Considering the sustainablility, workability, and compressive strength development of such concrete, high-volume supplementary cementitious materials (SCMs) were used as follows: 20% cement, 15% fly ash, and 65% ground granulated blast-furnace slag. As main test parameters selected for achieving the compressive strength of 1MPa and dry density of $1,000kg/m^3$, the unit solid content (dredged soil and binder) ranged between 900 and $1,807kg/m^3$, and soil-to-binder ratio varied between 3.0 and 7.0. Test results revealed that the flow of the lightweight foam-soil concrete tended to decrease with the increase of unit soil content. The compressive strength of such concrete increased with the increase with the unit binder content, whereas it decreased as soil-to-binder ratio increased, indicating that the compressive strength can be formulated as a function of its dry density and soil-to-binder ratio.

A Study on the Drain Performance & Pore Structure of Cellular Mortar which Drain Material of the Composite Lining Method (Composite 라이닝 공법의 배수공 재료인 경량기포모르타르의 공극구조와 배수성능에 대한 고찰)

  • Choi, Hee-Sup;Ma, Sang-Joon;Lee, Heung-Soo;Seo, Shin-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.425-426
    • /
    • 2009
  • As a result of the Mercury Intrusion Porosimetry(MIP) test, FCR Batch with the continuous voids in excellent permeability is appeared with the Cellular Mortar that is most suitable which Drain Material of the Composite Lining Method.

  • PDF

Decision of Optimized Mix Design for Lightweight Foamed Concrete Using Bottom Ash by Statistical Procedure (통계적 방법에 의한 바텀애쉬를 사용한 경량기포 콘크리트의 최적배합 결정)

  • Kim, Jin-Man;Kwak, Eun-Gu;Cho, Sung-Hyun;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.3-11
    • /
    • 2009
  • The increased demand and consumption of coal has intensified problems associated with disposal of solid waste generated in utilization of coal. Major utilization of coal by-products has been in construction-related applications. Since fly ash accounts for the part of the production of utility waste, the majority of scientific investigations have focused on its utilization in a multitude of use, while little attention has been directed to the use of bottom ash. As a consequence of this neglect, a large amount of bottom ash has been stockpiled. However, the need to obtain safe and economical solution for its proper utilization has been more urgent. The study presented herein is designed to ascertain the performance characteristics of bottom ash, as autoclaved lightweight foamed concrete product. The laboratory test results indicated that tobermorite was generated when bottom ash was used as materials for hydro-thermal reaction. According to the analysis of variance, at the fresh state, water ratio affects on flow and slurry density of autoclaved lightweight foamed concrete, but foam ratio influences on slurry density, while, at the hardened state, foam ratio affects on the density of dry and the compressive strength but doesn't affect on flexural and tensile strength. In the results of response surface analysis, to obtain target performance, the most suitable mix condition for lightweight foamed concrete using bottom ash was water ratio of 70$\sim$80% and foaming ratio of 90$\sim$100%.

Physical Properties of Foamed Concrete up In the Manufacturing Waste Expanded Poly-Styrene (폐스티로폼의 가공 형태에 따른 기포콘크리트의 물리적 특성 변화)

  • 오세출;서치호;신상태;지석원;김봉주
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.207-215
    • /
    • 2002
  • This study is focusing on mixing the foamed concrete incorporated by waste expanded polystyrene(W-EPS), investigating the physical properties and offering a proper quality control method to the field engineers. Two types of W-EPS (type A and type B) were studied. Type A (B) had globular (crushed) shape and diameter of 3-5 (1-2) mm. The results show that the flow was suddenly reduced with increasing mixing quantity of two types, but it satisfies KS F 4039 until 60 % of mixing rate. In general, the absorption rate was suddenly reduced with increased mixing quantity of two types especially, in type A. Apparent specific gravity was 0.36∼0.53 and reduced with increasing mixing quantify of type A. But it increased in case of type B. Compressive strength and heat conduction rate increased with mixing with W-EPS than non-mixing W-EPS but reduced with mixing too much W-EPS. Based ong the results, it is believed that mixing with W-EPS can improve the recycle of industrial wastes and produce the high quality foamed concrete.

Moment-Curvature Relation of Concrete Filled Circular Steel Tubular Beam with Nonlinear Stress-Strain Properties (비선형 응력-변형률 특성을 갖는 콘크리트 충전 원형강관 보의 모멘트-곡률 관계)

  • Park, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2005
  • This paper presents moment-curvature analytical method of concrete filled steel tubular members considering intensity increase phenomenon by triaxial compression stress generation. For this purpose, this study considers buckling characteristics about compression department of steel members that filled up light weight and normal concrete. The analytical results are compared with the test results. Even if beam that filled up light weight concrete was calculated moment-curvature relationship easily analytically and could know that analytical results estimates as well agreed with the test results in case filled up normal concrete. In addition, the efficiency and applicabilities of the proposed moment curvature relationship algorithm are verified through conventional experimental results.

A Basic Study on Light-weight Concrete Using Wasted Form Polyurethane (폐발포 폴리우레탄이 혼입된 경량 콘크리트의 기초적 연구)

  • Park, Sang-Hyo;Lee, Seong-Gyu;Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.356-362
    • /
    • 2016
  • Light-weight concrete uses forming agents for reducing weight and high heat insulation property. However, the forming agents make problems of decreased volume and compressive strength of the concrete. This research aims to having weight-reduction and securing heat insulation property using recycled wasted form polyurethane without any forming agents. A small quantity of admixture used for constructability and avoiding material segregation. We picked admixtures from two different companies which shows evenly dispersed of wasted form polyurethane. This research conducts a study on the effect of mixing ratio of admixture on the light-weight concrete used wasted form polyurethane. As a result of the test, increased mixing ratio of the admixtures results reduced fluidity of concrete. On the other hand, percentage of moisture content and compressive strength are increased slightly. Combustibility performance and sound insulation performance are also secured, as well.

Development of Automatic ALC Block Measurement Algorithm using Image Processing (영상처리에 의한 경량기포 콘크리트 블록의 치수 자동계측 알고리즘 개발)

  • 허경무;엄주진
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, we propose a machine vision system by which we can measure the size of ALC blocks in real-time in the Production Process. The images obtained by our system were processed by a devised algorithm, specially designed for the enhanced measurement accuracy. from the experimental results, we could find that the required measurement accuracy specification is sufficiently satisfied by using our proposed method.

An Experimental Study on the Performance Evaluation of Lightweight Foamed Concrete According to Size and Replacing Ratio of Artificial Lightweight Aggregate (인공경량골재 크기 및 혼입량에 따른 경량기포콘크리트의 물리적 성능 평가에 관한 실험적 연구)

  • Jeong, Seong-Min;Yun, Chang-Yeon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.162-163
    • /
    • 2017
  • This study investigated the properties of lightweight foamed concrete by using synthetic foaming agent and artificial lightweight aggregate. The effects of artificial lightweight sizes on the compressive strength, density and pore structure of the concrete were investigated. The samples were assessed by MIP analysis and simultaneous SEM was used to study their pore distribution. This study showed the improvement of important properties of lightweight foamed concrete. Lower pore distribution and correspondingly higher compressive strength values were reached. This is for the purpose of providing basic data for the use of lightweight foamed concrete through improvement on the problem such as unstability, falling in fluidity and the strength of existed foaming agent.

  • PDF