• Title/Summary/Keyword: 경량 골재

Search Result 342, Processing Time 0.031 seconds

Electrical Resistivity of ITZ According to the Type of Aggregate (골재 종류별 시멘트 경화체 계면의 전기저항 특성)

  • Kim, Ho-Jin;Bae, Je Hyun;Jung, Young-Hoon;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 2021
  • The three factors that determine the strength of concrete are the strength of cement paste, aggregate and ITZ(Interfacial Transition Zone) between aggregate and cement paste. Out of these, the strength of ITZ is the most vulnerable. ITZ is formed in 10~50㎛, the ratio of calcium hydroxide is high, and CSH appears low ratio. A high calcium hydroxide ratio causes a decrease in the bond strength of ITZ. ITZ is due to further weak area. The problem of ITZ appears as a more disadvantageous factor when it used lightweight aggregate. The previous study of ITZ properties have measured interfacial toughness, identified influencing factors ITZ, and it progressed SEM and XRD analysis on cement matrix without using coarse aggregates. also it was identified microstructure using EMPA-BSE equipment. However, in previous studies, it is difficult to understand the microstructure and mechanical properties. Therefore, in this study, a method of measuring electrical resistance using EIS(Electrochemical Impedance Spectroscopy) measuring equipment was adopted to identify the ITZ between natural aggregate and lightweight aggregate, and it was tested the change of ITZ by surface coating of lightweight aggregate with ground granulated blast furnace slag. As a result, the compressive strength of natural aggregate and lightweight aggregate appear high strength of natural aggregate with high density, surface coating lightweight aggregate appear strength higher than natural aggregate. The electrical resistivity of ITZ according to the aggregate appeared difference.

An Experimental Study on the Engineering Properties of Lightweight Aggregate Concrete (경량골재 콘크리트의 공학적 성질에 관한 실험적 연구)

  • ;R. N. Swanmy
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.75-82
    • /
    • 1997
  • 건설기술과 산업의 발전에 따라 구조물은 대형화되어 가고, 건설공사의 급격한 팽창으로 골재 수용량이 급증함에 따라 천연골재자원은 점차 부족현상을 면치 못할 처지에 있다. 또한, 무리한 천연골재의 채취는 자연환경을 훼손시킬 뿐만 아니라 자연보호 측면에서도 심각한 공해문제로 대두되고 있어 공급량 부족현상은 날로 심화되고 있다. 이에 세계 몇몇 나라에세는 산업부산물을 이용한 골재 생산으로 공해예방과 폐기물 활용방법을 연구하고 있다. 산업부산물중 플라이 애쉬 생산량은 전 세계적으로 매년 약 2억여톤에 달하고 있으나 이중 일부만 활용되고 있는 실정이다. 이와같은 부산물을 활용하기 위한 일환으로 산업부산물인 PFA(Pulverized Fuel Ash)로 만든 인공경량골재의 년생산량이 영국은 600,000$m^3$, 미국은 300,000$m^3$이며, 매년 증가주세에 있다. 고성능 경량골재 콘크리트는 단위중량의 증가없이 내구성과 강도를 향상시켜 실용화 측면에서 경제적인 효과가 있으며, 플라이 애쉬로 만든 경량골재는 시멘트와의 친화력이나 접착면에서 우수한 것으로 알려져 있다. 본 시험에 사용한 골재는 플라이 애쉬로 만든 인공경량 조골재와 강모래이고, 결합제로서 프틀랜드 시멘트를 사용하였다. 부수적인 결합재로서는 플라이 애쉬, 슬래그, 실리카 흄을 사용하였으며, 고성능 경량골재 콘크리트를 개발코자 재령 28일과 180일의 압축강도가 각각 50MPa와 60MPa가 되도록 배합설계를 하였다. 본 연구에서는 플라이 애쉬, 슬래그, 시리카 흄과 같은 산업부산물을 혼입했을때 경량골재 콘크리트의 압축강도, 휨강도, 동탄성계수, 공극체적, 공극률, 단위중량, 공극 크기별 분포등의 변화를 실험적으로 구명하여 재반 구조용 콘크리트에 활용하기 위한 기초자료를 마련코저 한다.있어 특정한 발육단계의 난포 사망기전을 연구하기 어렵다. 또한 난포는 생체 내에서 다양한 호르몬을 동시에 분비하기 때문에 특정한 난소국부호르몬이 사망기전에 미치는 영향을 조사하기 힘든 점이 있다. 최근 들어 난포체외배양이 다양하게 개발되면서, 이러한 어려운 점을 극복할 수 있게 되었다. 본 논문은 각 발육단계의 난포를 절단해 체외배양하면서, apoptosis DNA 절단 현상을 이용하여 각종 난소국부 호르몬들이 난포발육단계별로 사망기전에 미치는 영향을 요약해 보였다. 난포는 발육하면서 점차 복잡한 호르몬 경로를 생존을 위해 필요로 한다. Prevulatory난포생존에 필요한 난소국부호르몬들은 early antral 단계의 난포에서는 그 미치는 영향이 감소되다가 preantral단계의 난포에서는 영향을 전혀 미치지 못했다. 단지 예외는 cGMP처리로써, 세포내 cGMP수준을 일정하게 유지시켜주는 것이 난포발육단계에 무관하게 생존에 중요한 인자로, 장래 연구는 난포 세포내의 cGMP수준을 조절하는 기작을 규명하는데 있을 것이다.인정되지 않았다. 7. 농지보전 처리구인 배수구와 초생수로구는 비처리구에 비해 낮은 침두 유출량과 낮은 토양유실량을 나타내었다.구보다 14% 절감되는 것으로 나타났다.작용하는 것으로 사료된다.된다.정량 분석한 결과이다. 시편의 조성은 33.6 at% U, 66.4 at% O의 결과를 얻었다. 산화물 핵연료의 표면 관찰 및 정량 분석 시험시 시편 표면을 전도성 물질로 증착시키지 않고, Silver Paint 에 시편을 접착하는 방법으로도 만족한 시험 결과를 얻을 수 있었다.째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수록 현저했다. 주상에서 관측된 이러한 특성은 서브스톰 확장기 활동이 자기폭풍의 발달과 밀접한 관계가

  • PDF

Influence of Specimen Geometries on the Compressive Strength of Lightweight Aggregate Concrete (경량골재 콘크리트의 압축강도에 대한 시험체 기하학적 특성의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.333-340
    • /
    • 2012
  • The current study prepared 9 laboratorial concrete mixes and 3 ready-mixed concrete batches to examine the size and shape effects in compression failure of lightweight aggregate concrete (LWC). The concrete mixes were classified into three groups: normal-weight, all-lightweight and sand-lightweight concrete groups. For each concrete mix, the aspect ratio of circular or square specimens was 1.0 and 2.0. The lateral dimension of specimens varied between 50 and 150 mm for each laboratorial concrete mix, whereas it ranged from 50 to 400 mm with an incremental variation of 50 mm for each ready-mixed concrete batch. Test observations revealed that the crack propagation and width of the localized failure zone developed in lightweight concrete specimens were considerably different than those of normal-weight concrete (NWC). In LWC specimens, the cracks mainly passed through the coarse aggregate particles and the crack distribution performance was very poor. As a result, a stronger size effect was developed in LWC than in NWC. Especially, this trend was more notable in specimens with aspect ratio of 2.0 than in specimens with that of 1.0. The prediction model derived by Kim et al. overestimated the size effect of LWC when lateral dimension of specimen is above 150 mm. On the other hand, the modification factors specified in ASTM and CEB-FIP provisions, which are used to compensate for the shape effect of specimen on compressive strength, were still conservative in LWC.

A Study on Chloride Diffusion in Concrete Containing Lightweight Aggregate Using Crushed Stone-powder (폐석분을 활용한 경량골재 콘크리트의 염화물 확산에 관한 연구)

  • Lee, Dae-Hyuk;Yoon, Sang-Chen;Jeong, Yong;Shin, Jae-Kyung;Jee, Nam-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.255-262
    • /
    • 2010
  • The purpose of this study is to provide preliminary data on chloride diffusion of lightweight aggregate concrete containing crushed stone-powder. Accordingly, the study performed experiments using concrete aggregates of Crushed Aggregate (CG), Single-sized Lightweight Aggregate (SLG), Continuous Graded Lightweight Aggregate (CLG), and using water-binder ratio of 0.4, 0.5, 0.6, and using binder of FA and BFS. The chloride diffusion coefficient is calculated according to the NT BUILD 492. Diffusion coefficient of SLG and CLG were higher than that of CG concrete, but the difference was not significant. Also, chloride diffusion coefficient data indicated that it was highly affected by water-binder ratio, and it decreased with the decrease in waterbinder ratio. The admixture substitution of FA15% was effective in decreasing the diffusion coefficient only with water-binder ratio of 0.4 while admixture substitution of FA10+BFS20% was effective with all levels of water-binder ratio. The result of study shows lightweight aggregate concrete containing crushed stone-powder has slightly higher chloride diffusion coefficient than CG concrete, but the difference is not significant such that it can be overcome by adjusting water-binder ratio and admixture substitution. In addition, the data indicate the chloride diffusion coefficient of lightweight aggregate concrete can be estimated from the strength of lightweight aggregate.

Effect of Aggregate Size on the Shear Capacity of Lightweight Concrete Continuous Beams (경량콘크리트 연속보의 전단내력에 대한 골재크기의 영향)

  • Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.669-677
    • /
    • 2009
  • Twenty-four beam specimens were tested to examine the effect of the maximum aggregate size on the shear behavior of lightweight concrete continuous beams. The maximum aggregate size varied from 4 mm to 19 mm and shear span-to-depth ratio was 2.5 and 0.6 in each all-lightweight, sand-lightweight and normal weight concrete groups. The ratio of the normalized shear capacity of lightweight concrete beams to that of the company normal weight concrete beams was also compared with the modification factor specified in ACI 318-05 for lightweight concrete. The microphotograph showed that some unsplitted aggregates were observed in the failure planes of lightweight concrete beams, which contributed to the enhancement of the shear capacity of lightweight concrete beams. As a result, the normalized shear capacity of lightweight concrete continuous beams increased with the increase of the maximum aggregate size, though the increasing rate was lower than that of normal weight concrete continuous beams. The modification factor specified in ACI 318-05 was generally unconservative in the continuous lightweight concrete beams, showing an increase of the unconservatism with the increase of the maximum aggregate size. In addition, the conservatism of the shear provisions of ACI 318-05 was lower in lightweight concrete beams than in normal weight concrete beams.

Manufacturing of Artificial Lightweight Aggregate using Stone-Dust and Bottom Ash (석분토와 바텀애쉬를 이용한 인공경량골재 제조)

  • Yoon, Seob;Kim, Jung-Bin;Jeong, Yong;Kim, Yang-Bea
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.381-384
    • /
    • 2008
  • The artificial lightweight aggregate was manufactured using stone-dust(SD) and bottom ash(BA) from crushed aggregate manufacture process and thermoelectric power plant respectively. The properties of artificial lightweight aggregate according to mixing ratio of SD and BA was that the density was decreased and the absorption was increased with increasing BA content, because bottom ash was contained many unburned carbon and $Fe_2O_3$ which generates gas by oxidation during a sintering process. The appropriate mixing ratio of SD and BA was estimated at about 5:5. The properties of artificial lightweight aggregate according to addition flux admixture was that it had lower density with increasing of $Na_2SO_4$ content. In this study, we could developed the artificial lightweight aggregate as the bulk density was $1.52g/cm^3$ and water absorption 7.3% under the condition that mixing ratio of SD:BA was 5:5, $Na_2SO_4$, $Fe_2O_3$ 1%, sintering temperature $1,150^{\circ}C$ and sintering time 15mins.

  • PDF

An Experimental Study on the Drying Shrinkage and Creep of High Strength Eco Lightweight Aggregate Concrete (고강도 에코인공경량골재콘크리트의 건조수축 및 크리프에 관한 실험적 연구)

  • Lee, Jin-Woo;Park, Hee-Gon;Kim, Woo-Jae;Bae, Yeoun-Ki;Lee, Hyoung-Woo;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.425-428
    • /
    • 2008
  • To use lightweight aggregate concrete with the structural material, it was need to evaluate property of mechanic and drying shrinkage and creep of the lightweight aggregate concrete, but these weren't. So the purpose of this study which it sees follows the mechanical property of the eco lightweight aggregate concrete according to the water binder ration in the high strength concrete. Eco lightweight aggregate was made with clay and crushed rock in this study. To make experiment, water binder ratio was divided 35% and 39%. And the fresh concrete properties were that slump flow was 500${\pm}$50mm, air contents was 2.0${\pm}$1.0%. It evaluated the hold a drying shrinkage and the creep the effect, it analyzed quality and reliability of the eco lightweight aggregate concrete.

  • PDF

An experimental Study on the Fundamental Properties of Lightweight Aggregate Concrete (경량골재 콘크리트의 기초물성에 관한 실험적 연구)

  • Baek, Dong-Il;Han, Hyun-Sun;Kim, Myung-Sik;Jang, Hee-Suk;Kim, Chung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.335-336
    • /
    • 2009
  • In this study, the properties of lightweight concrete which is beneficial to cost and technique by reducing self weight of structure member was carried out basic research. The unit weight, compressive strength, splitting tensile strength test have been conducted with producting plain concrete, lightweight aggregate concrete type I and type II to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and addition of silica fume increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structure, systematic and rigorous studies are necessary.

  • PDF

Unburnt Carbon Combustion in the Production of Light Weight Sintered Fly ash (Fly ash 경량골재 생성 중 미연탄소의 연소 현상 규명)

  • 주윤정;오명숙
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.91-96
    • /
    • 2002
  • 본 연구는 화력발전소에서 발생하는 fly ash의 재활용 분야중 하나인 fly ash 경량골재 생산과정에서 소성(sintering)온도를 결정하는 미연탄소의 연소 현상을 분석함으로서 공정에 적용 가능한 단일 입자 연소 모델 개발을 목적으로 한다. fly ash 경량골재는 미연탄소를 포함한 fly ash를 점결제를 이용하여 성형하고, 함유된 미연탄소를 연소시켜, 그 연소열을 이용하여 fly ash를 소성 시켜 형성된다.(중략)

  • PDF