• Title/Summary/Keyword: 경두개직류전기자극술

Search Result 4, Processing Time 0.016 seconds

A Review on Effects of Non-Invasive Brain Stimulation in the Treatment of Sleep Disorders (수면장애에서 비침습적 뇌자극술의 치료 효과 고찰: 경두개자기자극술과 경두개직류전기자극술을 중심으로)

  • Kim, Shinhye;Lee, Suji;Lim, Soo Mee;Yoon, Sujung
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.2
    • /
    • pp.53-69
    • /
    • 2021
  • Sleep disorders, increasingly prevalent in the general population, induce impairment in daytime functioning and other clinical problems. As changes in cortical excitability have been reported as potential pathophysiological mechanisms underlying sleep disorders, multiple studies have explored clinical effects of modulating cortical excitability through non-invasive brain stimulation in treating sleep disorders. In this study, we critically reviewed clinical studies using non-invasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), for treatment of sleep disorders. Previous studies have reported inconsistent therapeutic effects of TMS and tDCS for various kinds of sleep disorders. Specifically, low-frequency repetitive TMS (rTMS) and cathodal tDCS, both of which exert an inhibitory effect on cortical excitability, have shown inconsistent therapeutic effects for insomnia. On the other hand, high-frequency rTMS and anodal tDCS, both of which facilitate cortical excitability, have improved the symptoms of hypersomnia. In studies of restless legs syndrome, high-frequency rTMS and anodal tDCS induced inconsistent therapeutic effects. Single TMS and rTMS have shown differential therapeutic effects for obstructive sleep apnea. These inconsistent findings indicate that the distinctive characteristics of each non-invasive brain stimulation method and specific pathophysiological mechanisms underlying particular sleep disorders should be considered in an integrated manner for treatment of various sleep disorders. Future studies are needed to provide optimized TMS and tDCS protocols for each sleep disorder, considering distinctive effects of non-invasive brain stimulation and pathophysiology of each sleep disorder.

Neuromodulation for Insomnia Management (불면증 치료법으로서의 뉴로모듈레이션)

  • Yoon, Ho-Kyoung
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.1
    • /
    • pp.2-5
    • /
    • 2021
  • Hyperarousal or increased brain excitability is thought to play a key role in the pathophysiology of insomnia. Neuromodulation techniques are emergent complementary therapies for insomnia and can improve sleep by modulating cortical excitability. A growing body of literature support the idea that neuromodulation can be effective in improving sleep or treating insomnia. Recent evidence has revealed that neuromodulation methods can improve objective and subjective sleep measures in individuals with insomnia, although effects vary according to protocol. Different mechanisms of action might explain the relative efficacy of neuromodulation techniques on sleep outcomes. Further research testing different stimulation parameters, replicating existing protocols, and adding standardized sleep-related outcomes could provide further evidence on the clinical utility of neuromodulation techniques.

Review : Effectiveness of transcranial direct current stimulation in rodent models of Alzheimer's disease (알츠하이머병 쥐 모델에서 경두개 직류 전기자극의 효용성 검토)

  • Kim, Ji-Eun;Park, Ye-Eun;Jeong, Jin-Hyoung;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.403-412
    • /
    • 2021
  • Alzheimer's disease (AD) is the most common cause of dementia, showing progressive neurodegeneration. Although oral medications for symptomatic improvement still take a huge part of treatment, there are several limitations caused by pharmacology-based real world clinic. In this respect, non-pharmacologic treatment for AD is rising to prominence. Transcranial direct current stimulation (tDCS) is a one of the non-invasive neuromodulation technique, using low-voltage direct current. In terms of safety, tDCS already has been proven through numerous previous reports. This review focused on behavioral, neurophysiologic and histopathologic improvement by applying tDCS in AD rodent models, thereby suggesting reliable background evidence for human-based tDCS study.

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.