• Title/Summary/Keyword: 경년화

Search Result 37, Processing Time 0.02 seconds

Acid rain in Kwangiu, Korea (Precipitation intensity and persistent time) (남한의 광주광역시에서 산성비에 관한 연구)

  • 류찬수
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.663-676
    • /
    • 1996
  • The analyzed results of observed precipitation and its pH in Kwangiu for 262 days from fan. 1, 1991 to Dec. 31, 1995 are as follows. The annual mean pH was 5.7, and the monthly mean pH values of January-May and November were less than 5.6 in Kwangiu. The ratio of acid rain for these periods was about 48.1%, almost half that of the total observed days. In March, the pH was 5.4 and the ratio of acid precipitation was 69%, an especially serious situation. In the spring, the pH value was 5.5, thus weakly acidic. The pH of precipitation tended to decrease with greater precipitation. The relation between persistent time and pH of precipitation is variable, but if the persistent time is long, the pH is constant and low. It is fortunate that there is an increasing trend of pH in interannual variation, but it is thought important that the amplitude of variation of pH in 1995 was high and the pH value was 4.1 in October and November. Because heavy and persistent precipitation effects the accumulation of acidity, more concern about acid rain is needed.

  • PDF

A study on the regional climate change scenario for impact assessment on water resources (수자원 영향평가에 활용 가능한 지역기후변화 시나리오 연구)

  • Im, Eun-Soon;Kwon, Won-Tae;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1043-1056
    • /
    • 2006
  • Our ultimate purpose is to investigate the potential change in regional surface climate due to the global warming and to produce higher quality regional surface climate information over the Korean peninsula for comprehensive impact assessment. Toward this purpose, we carried out two 30-year long experiments, one for present day conditions (covering the period 1971-2000) and one for near future climate conditions (covering the period 2021-2050) with a regional climate model (RegCM3) using a one-way double-nested system. In order to obtain the confidence in a future climate projection, we first verify the model basic performance of how the reference simulation is realistic in comparison with a fairly dense observation network. We then examine the possible future changes in mean climate state as well as in the frequency and intensity of extreme climate events to be derived by difference between climate condition as a baseline and future simulated climate states with increased greenhouse gas. Emphasis in this study is placed on the high-resolution spatial/temporal aspects of the climate change scenarios under different climate settings over Korea generated by complex topography and coastlines that are relevant on a regional scale.

A study on reliability analysis model of the repair and replacement cycle of a building which utilizes Monte Carlo Simulation (몬테카를로 시뮬레이션을 활용한 건축물 수선교체주기 신뢰성 분석 모델에 관한 연구)

  • Kim, Jong-Rok;Jung, Young-Han;Son, Jae-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.41-50
    • /
    • 2010
  • This study presented a model that can enable a reliability analysis for the repair and replacement cycle of a building by using background repair and replacement data and expert opinion as foundation data and applying Monte Carlo Simulation. The presented model offers the time of the repair and replacement of building elements for the period of a year, and supports the prediction of repair and replacement and expenses demand in advance while planning the maintenance of a building. In addition, the model will significantly reduce the risks to the building owner with regard to maintenance decisions. In addition, when a person in charge of the maintenance of large-scale building assets is having difficulties making decisions regarding the repair and replacement of existing building elements due to a lack of background data to support a long-term policy on the repair and replacement requirements, an engineering solution that can ensure the adequacy of this is provided. In summary, it can be largely divided into three study results. First, a method of estimating the repair and replacement cycle that can deal with the development of a construction system was developed. Second, a probabilistic methodology that can quantify the risk of the repair and replacement cycle was proposed. Third, the proposed model can be used as a means of supporting designer and constructor in making decisions for the life cycle plan of a building during a construction project.

A Study on a Quantitative Method in Estimating Forest Effects for Streamflow Regulation (II) - Mainly Dealing with Application of Coefficient for Slope Roughness - (삼림이수기능(森林理水機能)의 정량적(定量的) 평가방법(平價方法)에 관한 연구(硏究)(II) - 조도계수(粗度係數)의 응용(應用)을 중심(中心)으로 -)

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.337-345
    • /
    • 1992
  • In this research, a kinematic wave model was applied for the runoff analysis, Regulation of streamflow was estimated by the calibration of roughness coefficient as a parameter. The data analyzed were obtained from Ananomiya and Shirasaka experimental basins at Tokyo University Forest in Aichi. Estimation methods and characteristics of roughness coefficient as a evaluation method of hydrological function of forest are summarized as follows ; 1. Roughness coefficient($N_s$) indicates the resistance of hillslope to the flowing water of surface runoff. There exists an hypothesis that resistance of hillslope to flowing water increase with the growth forest and development of the $A_o$ layer. 2. Roughness coefficient($N_s$) was estimated by the parameter when the stream direct runoff was calculated by using the kinematic wave. 3. Secular change of '$N_s$' in ananomiya has a curve which has an upper limit and increases exponentially near the limit. The curve quickly increased from 1935 to 1945 when results of afforestation for erosion control were thought to be effective. On the other hand, slight increase of '$N_s$' in Shirasaka indicates that there was not such a big change in the surface of soil layer. 4. The increase of '$N_s$' was related with decrease of direct runoff and increase of base flow. It was recognized that the rate of direct runoff decreased with the improvement of forest physiognomy and the rate of base flow was increased. But absolute value of water runoff per one storm decreased in chronological order.

  • PDF

Correlation between Meteorological Factors and Water Discharge from the Nakdong River Barrage, Korea (낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(I) - 하구둑 방류량과 기상인자 -)

  • Park, San;Yaan, Han-Sam;Lee, In-Cheal;Kim, Hean-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • We estirmted the yearly and monthly variation in discharge from the Nakdong River Barrage. We studied the total monthly discharge, the mean daily discharge, and the maximum daily discharge based on the observational discharge data for the 11-year period 1996-2006. We also examined the correlation between the discharge and the meteorologiml factors that influence the river inflow. The results from this study are as follows. (1) The total monthly discharge for 11 years at the Nakdong River Barrage was $224,576.8{\times}10^6\;m^3$: The daily maximum was in 2003, with $56,292.3{\times}10^6\;m^3$. The largest daily mean release discharges occurred in August with $52,634.2{\times}10^6\;m^3$ (23.4% of the year), followed by July and September in that order with 23.1 and 17%, respectively. (2) The monthly pattern of discharge could be divided into the flood season for the period July-September (discharge =$1000{\times}10^6\;m^3$/day), the normal season from April to June and October (discharge=$300{\times}10^6\;m^3$/day), and the drought season from December to March (discharge < $300{\times}10^6\;m^3$/day). (3) Periods of high temperature, low evaporation loss, and short sunshine duration produced a much higher discharge in general. Conditions of low rainfall and high evaporation loss, as was the rose in 2003, tended to reduce the discharge, but high rainfall and low evaporation loss tended to increase the discharge as it did in 200l. (4) The dominant wind directions during periods of high discharge were NNE (15.5%), SW and SSW (13.1%), S(12.1%), and NE (10.8%) This results show that it run bring on accumulation of fresh water when northern winds are dominant, and it run flow out fresh water toward offslwre when southern winds are dominant.

  • PDF

A Long-term Variability of the Extent of East Asian Desert (동아시아 사막 면적의 경년변화분석)

  • Han, Hyeon-Gyeong;Lee, Eunkyung;Son, Sanghun;Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Jin, Donghyun;Kim, Honghee;Kwon, Chaeyoung;Lee, Darae;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.869-877
    • /
    • 2018
  • The area of desert in East Asia is increasing every year, and it cause a great cost of social damage. Because desert is widely distributed and it is difficult to approach people, remote sensing using satellites is commonly used. But the study of desert area comparison is insufficient which is calculated by satellite sensor. It is important to recognize the characteristics of the desert area data that are calculated for each sensor because the desert area calculated according to the selection of the sensor may be different and may affect the climate prediction and desertification prevention measures. In this study, the desert area of Northeast Asia in 2001-2013 was calculated and compared using Moderate Resolution Imaging Spectroradiometer (MODIS) and Vegetation. As a result of the comparison, the desert area of Vegetation increased by $3,020km^2/year$, while in the case of MODIS, it decreased by $20,911km^2/year$. We performed indirect validation because It is difficult to obtain actual data. We analyzed the correlation with the occurrence frequency of Asian dust affected by desert area change. As a result, MODIS showed a relatively low correlation with R = 0.2071 and Vegetation had a relatively high correlation with R = 0.4837. It is considered that Vegetation performed more accurate desert area calculation in Northeast Asian desert area.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.