• Title/Summary/Keyword: 경계 특성

Search Result 2,878, Processing Time 0.03 seconds

Nodal Analysis of Optimum Operating Condition on Gathering System Considering Coalbed Methane Production Characteristics (석탄층 메탄가스 생산 특성을 고려한 포집시스템 최적 운영조건 노달분석)

  • Jung, Woodong;Cho, Wonjun;Lee, Jeseol;Yu, Hyejin;Seomoon, Hyeok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • Coalbed methane has a nonlinear desorption curve depending on the pressure, so an appropriate production system should be constructed considering this phenomenon. The capacity and specification of the coalbed methane gas production facility are determined by the gas flow rate and pressure in the coalbed, which is the external boundary condition of the system. Thus, it is essential to analyze these characteristics in gas production. The gas inflow equation was calculated using the reservoir flow model and utilized as the boundary condition of the whole production facility in this study. Also, to understand the effect of pressure drop on the gas flow in the production facility, the nodal analysis was performed using the flow analysis simulator of production equipment, and we determined the proper specifications and operating conditions of the production facility. This study presents a design criteria as to production and gathering system capable of effectively transporting coalbed methane.

Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members (비선형 부착 특성에 기반한 철근콘크리트 부재의 인장증강효과 모델)

  • Lee, Gi-Yeol;Ha, Tae-Gwan;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.745-754
    • /
    • 2007
  • This paper presents a unified modeling technique for tension stiffening effect in structural concrete members. The model is mathematically derived from the bond stress-slip relationships which account for splitting crack. The relationships in CEB-FIP Model Code 1990 and Eurocode 2 are employed together with the assumptions of a linear slip distribution along the interface and the uniform condition of concrete tensile contribution for the mid section of cracked member at the stabilized cracking stage. With these assumptions, a model of tension stiffening effect is proposed by accounting for the force equilibrium and strain compatibility condition associated to the steel strain and concrete contribution by bond stress. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured behavior.

LES for Turbulent Channel Flow with Blowing Velocity (분류유동이 있는 채널 난류유동의 LES 해석)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.699-705
    • /
    • 2007
  • Recent experimental data shows that the noticeable feature of irregular roughened spots on the fuel surface occurs during the combustion test with PMMA/GOX in the hybrid rocket motor. The generation of these unexpected patterns is likely to be resulted from the disturbed boundary layer due caused by wall blowing which is intented to simulate the process of fuel vaporization. LES technique was implemented to investigate both the flow characteristics near fuel surface and the subsequent evolution of turbulence modified by the wall blowing. Simple channel geometry instead of circular grain configuration was used for the investigation without chemical reactions in order to allow for a focused examination on the near-wall behavior at the Reynolds number of 22,500. It was shown that the wall blowing pushed turbulent structures upwards making them tilted and this skewed displacement, in effect, left the foot prints of the structures on the surface. This change of kinematics may explain the formation of irregular isolated spots on the fuel surface observed in the experiment.

A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Seong, Dae-Yong;Yang, Dong-Yol;Lim, Ji-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

Microstructural Evolution and Magnetic Property of Creep-Fatigued Ferritic 9Cr Heat-Resisting Steel (크리프-피로 손상된 페라이트기 9Cr 내열강의 미세조직 발달과 자기적 특성)

  • Kim, Chung-Seok;Kwun, S.I.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.417-425
    • /
    • 2007
  • The ferritic 9Cr-1Mo-V-Nb heat-resisting steel was experimentally studied in order to characterize its microstructural evolution during creep-fatigue by coercivity measurement. The creep-fatigue test was conducted at $550\;^{\circ}C$ with the tensile holding time of 60s and 600s, respectively. The coercivity decreased until the failure and the hardness monotonously decreased for the whole fatigue life. As the life fraction of creep-fatigue increased, the $M_{23}C_6$ carbide coarsened following the Ostwald ripening mechanism. However, the MX carbonitrides did not grow during creep-fatigue due to so stable at $550\;^{\circ}C$. The width of martensite lath increased because of the dislocation recovery at the lath boundaries. The magnetic coercivity has an influence on the microstructural properties such as dislocation, precipitates and martensite lath boundaries, which interpreted in relation to microstructural changes. Consequently, this study proposes a magnetic coercivity to quantify the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.

Crack Width Calculation Based on Bond Characteristics and Cracking Behavior of Reinforced Concrete Structures (부착특성과 균열거동을 고려한 철근콘크리트 구조물의 균열폭 계산)

  • Yang, Jun-Ho;Kim, Woo;Lee, Gi-Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.944-952
    • /
    • 2009
  • This paper presents an analytical model for calculation of crack widths in reinforced concrete structures. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 and Eurocode 2 are employed in this study together with the numerical analysis result of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

An Experimental Study on the Behaviour of Tunnel Excavated in a Homogeneous Ground by Two-Stage Excavation (균질지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적 연구)

  • 김동갑;박승준;이상덕
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • In a shotcrete support system, the cooperation of the ground and the shotcrete lining makes it possible to transfer the shear stress to the shotcrete lining, which is dedicated to form a stable structure. In this study, a homogeneous model ground with constant strength was produced by using gypsum and the tunnel was excavated with a top heading method under the definite initial stress. During the excavation, the stress in the ground around the tunnel and the deformation of shotcrete lining were measured, The tensile stress was generated in tangential direction in the ground near the tunnel and in the shotcrete lining due to tunnel excavation. This shows the unified behavior of the ground and shotcrete lining, which is the most typical characteristic of the shotcrete support. As a result, the rates of in-situ stress during the excavation at a top boundary line was 9% and at top arch heading 15%. It was 48% right after excavating the heading and 94% before cutting the bench.

Characteristic Stereostructures and Regioselectivity of Biogenic Pathway of FPTase Inhibition Materials Isolated from Artemisia sylvatica (그늘쑥(Artemisia sylvatica Max.)으로부터 분리된 FPTase 저해활성 물질들의 구조적인 특성과 biogenic pathway의 배향성)

  • Kwon, Byung-Mok;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.223-227
    • /
    • 2002
  • Characteristic stereostructures of farnesyl protein transferase (FPTase) inhibition materials isolated from Artemisia sylvatica and regioselectivity of biogenic Diels-Alder reactions between dehydromatricarin molecules A and B were examined quantitatively. Results revealed that the major reaction of frontier molecular orbital (FMO) interaction proceeds through charge-control reaction between LUMO of A16, dienophile and HOMO of B1, diene, and the isolated 8-acetylarteminolide and artanomaloide were minor products. FPTase inhibition activity and hydrophobicity of 8-acetylarteminolide were $pI_{50}=3.75$ and logP=2.62, respectively. FPTase inhibition activity of 8-acetylarteminolide was higher than those of artanomaloide and dehydromatricarin.

Boundary, Functions and Internal Structure of CBD in Seoul (서울 도심의 경계, 기능 및 내부구조)

  • Joo, Kyung-Sik;Seo, Min-Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.1
    • /
    • pp.41-56
    • /
    • 1998
  • The main purpose of this study is to delimit the boundary of central business district and to describe the internal structure of CBD in Seoul. To delimit the CBD boundary, we used the locational matrices of main CBD functions, which were ofganized through fieldworks. CBD functions are classified into 20 categories. They are retail sales, corporation managements, administration managements, business, and unclassified services, customer(personal)services, and manufacturings. The core area of CBD in Seoul is at Chongro and Chung Gu area that shows the locational consistency comparing to 1970s. Although the boundary is slightly expanded into west, south and east, the extent of horizontal expansion in CBD can be negligible comparing to the remarkable growth of Korean economy after 1970s. The reasons why CBD showed little expansion can be found out from the process of restructuring in Seoul metropolitan area, such as the growth of subcenters, decentralization of central functions, construction of highrise buildings, redevelopment in central area and so on. Internal structure of Seoul's CBD shows 5 specialized functional subdistricts. They are CBD core area, subdistrict of department and office functions, retail sales, customer services and light manufacturings.

  • PDF

A Study on the Hydraulic Characteristics in a Compound Channel (복단면(複斷面) 수로(水路)에서의 수리학적(水理學的) 특성(特性)에 관한 연구(研究))

  • Jeong, Dong Guk;Ahn, Soo Hahn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.25-33
    • /
    • 1986
  • Natural river channels usually have a deep section and one or two floodplains, which is called a compound channel. As the general method in the compound channel overestimates the discharge capacity, the momentum transfer due to interaction between the main channel flow and flow over its floodplain must be considered. Scale model experiments are performed for the rectangular main channel with an asymmetrical floodplain. Firstly, velocities are measured at various section grids. Secondary, boundary shear stresses are calculated from velocity distributions. Lastly, in order to determine the apparent shear force, the shear stress distributions are integrated along the wetted perimeter for the full cross-section and equated to the total weight force in the flow direction. The hydraulic characteristics in a compound channel are closely examined with the scales of length, velocity, boundary shear stress, and apparent shear force which are described with the various relationships.

  • PDF