• 제목/요약/키워드: 경계 이동법

검색결과 165건 처리시간 0.021초

확장된 이동최소제곱 유한차분법을 이용한 1D Stefan문제의 해석 (Analysis of 1-D Stefan Problem Using Extended Moving Least Squares Finite Difference Method)

  • 윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.308-313
    • /
    • 2009
  • 본 논문은 확장된 이동최소제곱 유한차분법을 이용하여 1차원 Stefan 문제를 해석할 수 있는 수치기법이 제시한다. 이동하는 경계의 자유로운 묘사를 위해 요소망이나 그리드 없이 절점만을 사용하는 이동최소제곱 유한차분법을 사용하였으며, 계면경계의 특이성을 모형화하기 위해 Taylor 다항식에 쐐기함수를 도입했다. 지배방정식은 안정성이 높은 음해법(implicit method)을 이용하여 차분하였다. 미분의 특이성을 갖는 이동경계를 포함한 반무한 융해문제의 수치해석을 통해 확장된 이동최소제곱 유한차분법이 높은 정확성과 효율성을 갖는 것을 보였다.

  • PDF

2차원 융해문제의 해석을 위한 이동최소제곱 차분법 (Moving Least Squares Difference Method for the Analysis of 2-D Melting Problem)

  • 윤영철
    • 한국전산구조공학회논문집
    • /
    • 제26권1호
    • /
    • pp.39-48
    • /
    • 2013
  • 본 논문은 기존의 1차원 Stefan 문제를 해석할 수 있는 이동최소제곱 차분법을 확장하여 복잡한 계면경계 형상을 갖는 2차원 문제에 적용할 수 있는 수치기법을 개발한다. 1차원 경우와 달리 2차원 영역에서 임의로 움직이는 이동경계의 위상변화를 효과적으로 모델링할 수 있는 기법을 제안했으며, 이동경계 모사시 절점만 사용하는 이동최소제곱 차분법의 강점을 그대로 살리면서 이동경계의 불연속 특이성과 kinetics 조건을 정확하게 만족시키는 이동최소제곱 미분근사식을 제시했다. 평형방정식은 implicit(음해)법으로 차분하여 수치 안정성을 확보했으며, 이동경계는 explicit(양해)법으로 update하여 계산효율성의 극대화했다. 몇 가지 수치예제를 통해 개발된 이동최소제곱 차분법이 다양한 계면경계 형상을 갖는 2차원 Stefan 문제를 정확하고 효율적으로 풀 수 있음을 검증했다.

계면경계 문제의 효율적인 해석을 위한 계면경계조건이 매입된 이동최소제곱 차분법 (An effective MLS Difference Method with immersed interface for solving interface problems)

  • 윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.752-755
    • /
    • 2011
  • 이종재료의 열전달문제 수치해석시 추가적으로 만족시켜야 하는 계면경계조건들의 존재와 계면경계로 인한 불연속면의 처리는 근사함수의 구성 뿐만 아니라 수치기법의 개발 자체를 어렵게 만든다. 본 논문에서는 계면경계의 불연속성을 모델링하는 특수한 함수를 포함하고 계면경계조건을 항상 만족시킬 수 있는 근사함수를 구성하고, 계면경계문제의 강형식을 직접 이산화하며 고속으로 해를 계산할 수 있는 이동최소제곱 차분법을 제시한다. 계면경계조건이 매입된 이동최소제곱 차분법으로 이종재료의 열전달문제를 해석한 결과, 높은 정확성과 효율성을 갖는 것을 확인할 수 있었다.

  • PDF

확장된 이동최소제곱 유한차분법을 이용한 이동경계문제의 해석 (Analysis of Moving Boundary Problem Using Extended Moving Least Squares Finite Difference Method)

  • 윤영철;김도완
    • 한국전산구조공학회논문집
    • /
    • 제22권4호
    • /
    • pp.315-322
    • /
    • 2009
  • 본 논문은 확장된 이동최소제곱 유한차분법을 이용하여 1차원 Stefan 문제를 해석할 수 있는 새로운 수치기법이 제시한다. 이동하는 계면경계의 자유로운 수치적인 묘사를 위해 요소망이나 그리드 없이 절점만을 사용하는 이동최소제곱 유한차분법을 도입하고, 계면경계의 특이성을 모형화하기 위해 Taylor 다항식에 쐐기함수를 도입하여 확장했다. 지배방정식의 차분은 안정성을 보장해 주는 음해법(implicit method)을 이용한다. 이동경계를 포함한 반무한 융해문제, 실린더 형상의 고체화 문제의 수치해석을 통해 확장된 이동최소제곱 유한차분법이 높은 정확성과 효율성을 갖는 것을 보였다.

1차원 자유경계문제의 해석을 위한 Implicit 이동최소제곱 차분법 (Implicit Moving Least Squares Difference Method for 1-D Moving Boundary Problem)

  • 윤영철
    • 한국전산구조공학회논문집
    • /
    • 제25권5호
    • /
    • pp.439-446
    • /
    • 2012
  • 본 논문은 1차원 자유경계문제 해석의 정확도 향상을 위해 이동최소제곱 차분법을 이용하여 이동경계의 위상변화를 implicit하게 추적하는 기법을 제시한다. 기존의 이동최소제곱 차분법은 이동경계의 위치를 explicit하게 진전시켜 반복계산은 필요없지만 해의 정확도 감소를 피할 수 없었다. 그러나 본 연구에서 제시한 implicit 기법은 전체 계방정식이 비선형 시스템이 되어 반복계산 과정이 필요하지만, 실제로 수치예제를 통해 검증해 본 결과 계산량의 큰 증가없이 해석의 정확도를 획기적으로 향상시켰다. 이동하는 미분불연속 특이성을 갖는 융해(melting)문제를 수치계산한 결과, implicit 이동최소제곱 차분법을 통해 2차정확도를 얻을 수 있음을 보였다.

Implicit 이동최소제곱 차분법을 이용한 1차원 자유경계문제의 해석 (Analysis of 1-D Free boundary Problem Using Implicit Moving-Least-Squares Difference Method)

  • 윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.48-51
    • /
    • 2010
  • 본 논문에서는 자유경계문제 해석을 위해 정확도가 향상된 implicit 이동최소제곱 차분법을 제시한다. 계면경계에 대한 implicit 정의로 인해 비선형 시스템이 구성되고, 매 해석단계마다 절점해와 계면경계의 위치를 반복계산을 통해 찾는다. 계면경계 결정시 속도항을 한 단계 뒤로 지연시켜 explicit하게 근사적으로 계산하던 기존 방법에 비해 계면경계의 위치를 더 정확하게 계산할 수 있고, 결과적으로 해의 정확도가 향상되었다. 계면경계 위치값이 비교적 빠른 속도로 수렴하기 때문에 많은 반복계산이 필요치 않다. 수치예제를 통해 기존의 방법으로 계산한 결과와 비교하여 새롭게 개발한 implicit 방법의 향상된 정확도를 보였다.

  • PDF

이동최소제곱 유한차분법을 이용한 계면경계를 갖는 이종재료의 열전달문제 해석 (Heat Transfer Analysis of Bi-Material Problem with Interfacial Boundary Using Moving Least Squares Finite Difference Method)

  • 윤영철;김도완
    • 한국전산구조공학회논문집
    • /
    • 제20권6호
    • /
    • pp.779-787
    • /
    • 2007
  • 본 연구는 계면경계에서 특이성을 갖는 이종재료 열전달문제를 효율적으로 해석할 수 있는 이동최소제곱 유한차분법을 제시한다 이동최소제곱 유한차분법은 격자망(grid)없이 절점만으로 이동최소제곱법을 이용하여 Taylor 다항식을 구성하고 차분식을 만들어 미분방정식을 직접 푼다. 초평면함수 개념에 근거한 쐐기함수를 이동최소제곱 센스(sense)로 근사식에 매입하여 쐐기거동과 미분 점프에 따른 계면경계 특성을 효과적으로 묘사하고 고속으로 미분을 근사하는 이동최소제곱 유한차분법의 강점을 발휘하도록 했다. 서로 다른 열전달계수를 갖는 이종재료 열전도문제 해석을 통해 이동최소제곱 유한차분법이 계면경계문제에서도 뛰어난 계산효율성과 해의 정확성을 확보할 수 있음을 보였다.

계면경계를 갖는 포텐셜 문제 해석을 위한 내적확장된 이동최소제곱 유한차분법 (Intrinsically Extended Moving Least Squares Finite Difference Method for Potential Problems with Interfacial Boundary)

  • 윤영철;이상호
    • 한국전산구조공학회논문집
    • /
    • 제22권5호
    • /
    • pp.411-420
    • /
    • 2009
  • 본 연구는 계면경계를 갖는 포텐셜 문제의 해석를 위한 이동최소제곱 기반의 확장된 유한차분법을 제시한다. 이동최소제곱법을 이용한 Taylor 전개로부터 얻어진 근사함수에 쐐기함수를 도입하여 계면경계의 특이성을 모사한다. 지배방정식은 요소나 그리드없이 절점만을 이용해 이산화한다. 계면경계의 특이성은 절점에서 구성되는 근사식에 매입되기 때문에 계면경계의 기하학적 모델링으로 발생하는 수치적인 어려움을 피할 수 있다. 계면경계 조건으로 인해 전체 계방정식에 추가되는 미지수는 없지만, 계방정식을 과결정 시스템으로 만드므로 강성도 행렬을 대칭화하여 미지수와 방정식의 개수를 일치시켰다. 이로 인한 계산량 증가는 계면경계 모델링의 간소화로 인한 수치적인 이득과 맞바꿀 수 있다. 다양한 수치적 검증을 통해 개발된 해석기법이 쐐기거동과 점프를 성공적으로 묘사할 뿐만 아니라 계면경계를 갖는 포텐셜 문제 효율적이고 정확하게 해석할 수 있음을 보였다.

이동경계기법을 이용한 제주항의 유동해석 (The Flow Analysis of Jeju Harbor using Moving Boundary Technique)

  • 김남형;박지훈
    • 한국항해항만학회지
    • /
    • 제27권5호
    • /
    • pp.539-546
    • /
    • 2003
  • 유한요소기법을 이용하여 유동해석의 수치모델을 행하였다 공간을 이산화 할 때에는 Galerkin법을 적용하였으며, 시간의 함수를 이산화 할 때에는 많은 수의 요소와 비정상상태의 문제를 다루는데 있어 장점을 가진 2단계 양해법을 이용하였다. 이동경계조건을 고려한 2차원유통모델을 개발하였고, 직사자형 수조에서 개발된 유동모델을 적용하여 검증하였고, 유용성을 확인하였다. 제주항에 개발된 이동경계기법을 적용하여 계산한 결과, 본 이동경계기법의 좋은 적용성을 보여주었다. 본 연구로부터 이동경계처리 방법이 실해역에서의 유동해석에 있어 유용하고 효율적인 방법이라고 결론지을 수 있다.

독립적으로 모델링된 유한요소 부분구조물 시스템의 통합 연계해석을 위한 이동최소자승 정계접합법의 개발 (Moving Least Squares Interface Welding Method for Coupled Analysis of Independently Modeled Finite Element Substructures)

  • 안재모;송유미;최동환;조진연
    • 한국항공우주학회지
    • /
    • 제33권10호
    • /
    • pp.26-34
    • /
    • 2005
  • 본 논문에서는 독립적으로 모델링되어 절점 불일치 경계면이 존재하는 유한요소 부분구조물들로 구성된 복합 구조시스템의 통합적인 연계해석을 위해 이동최소자승 경계접합법을 제안한다. 제안된 이론을 합성함수 구성 및 근사화 과정을 통해 설명하고, 새로 제안된 경계접합법의 타당성, 수렴성 및 효율성을 고찰하기 위해 각종 수치실험을 수행한다. 패치 테스트, 수렴성 조사를 통해 제안된 이론의 타당성을 보이고, 각종 통합 연계해석 수치예제를 통해 격자 재생성이나 추가적 미지수의 도입이 필요 없는 이동최소자승 경계접합법의 실제적 효율성을 입증한다.