• 제목/요약/키워드: 경계 변수

검색결과 680건 처리시간 0.022초

ART2 알고리즘에서의 경계 변수 설정 방법 (Setting Method of Vigilance Parameter of ART2 Algorithm)

  • 박성열;김성훈;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.31-34
    • /
    • 2009
  • ART2 알고리즘은 신경 회로망 모델로서 실시간 학습이 가능하여 저속 및 고속을 지원할 뿐만 아니라 지역 최소화(local minima) 문제가 발생하지 않는 장점을 갖는다. 그러나 ART2 알고리즘은 경계 변수 설정에 따라 클러스터의 수가 달라지며, 이러한 경계 변수 설정은 패턴의 분류와 인식 성능을 좌우한다. 따라서 본 논문에서는 ART2 알고리즘에서 효율적으로 경계 변수를 설정하기 위해 패턴셋 설정을 통한 경계 변수 설정 방법을 제안한다. 제안된 경계 변수 설정 방법의 성능을 평가하기 위해 숫자 및 영문 패턴을 대상으로 실험한 결과, 패턴 분류의 성능이 기존의 방식 보다 개선된 것을 확인하였다.

  • PDF

운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘 (An Enhanced Fuzzy ART Algorithm for The Identifier Recognition from Shipping Container Image)

  • 류재욱;김태경;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.365-369
    • /
    • 2002
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

개선된 유사성 검증 방법과 동적인 경계 변수를 이용한 ART1 알고리즘에 관한 연구 (A Study on ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold)

  • 민지희;홍제형;김재용;김광백
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.193-197
    • /
    • 2003
  • 기존의 ART1 알고리즘은 입력 패턴과 저장 패턴간의 유사성 검증 방법의 문제점과 경계 변수에 따라 클러스터의 수와 인식률이 좌우되는 문제점이 있다. 본 논문에서는 기존의 ART1 알고리즘을 개선하기 위하여 입력 패턴과 저장 패턴간의 Exclusive NOR의 놈(norm) 비율을 사용하는 유사성 측정 방법과 퍼지 접속 연산자를 이용하여 유사성에 따라 경계변수를 동적으로 조정하는 방법을 적용한 개선된 ART1을 제안한다. 제안된 방법에서는 1의 개수 비율이 아니라 같은 값을 가진 노드의 비율을 사용하여 유사성을 측정하고 경계 변수는 Yager의 합 접속 연산자를 사용하여 동적으로 조정한다. 제안된 방법의 성능을 확인하기 위하여 26개의 영문 패턴 분류 문제와 잡음이 있는 패턴 인식 문제를 대상으로 실험한 결과, 제안된 방법이 기존의 ART1 알고리즘 보다 경계 변수의 설정에 따라 민감하게 반응하지 않았고 인식률에서도 개선된 것을 확인하였다.

  • PDF

효과적인 영상 인식을 위한 개선된 퍼지 ART 알고리즘 (An Enhanced Fuzzy ART Algorithm for Effective Image Recognition)

  • 김광백;박충식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.262-267
    • /
    • 2007
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

  • PDF

저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법 (Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element)

  • 조준형;박영목;우광성
    • 한국전산구조공학회논문집
    • /
    • 제25권5호
    • /
    • pp.413-420
    • /
    • 2012
  • 본 논문은 2차원 선형탄성 직접 경계요소법에서 저매개변수 요소를 사용할 때 Kernel의 적분방법에 대하여 논의하였다. 일반적으로 등매개변수 요소의 경우 형상함수로 통칭되는 해의 기저함수와 요소의 적분을 위해 사용되는 사상함수를 동일하게 사용한다. 그러나 본 논문에서는 사상함수의 차수를 낮게 취하여 순수기저절점을 도입하고 그때 직접 경계요소의 Kernel을 적분하기 위한 방법이 모색되었다. 일반적으로 경계요소법의 적분 Kernel의 경우 Log수치적분과 코쉬주치(Cauchy principal value) 등을 통해 해결하는데, 본 논문에서는 대수적 조작을 통해 적분값의 정확도를 높일 수 있도록 새로운 수식을 유도하였다. 본 연구에서 저매개변수 기반의 직접 경계요소에 대한 강건성과 정확도를 검증하기 위해 2차원 타원형 편미분방정식으로 표현되는 평면응력과 평면변형문제에 대해 적용하였다. 적용 예제로는 단순연결영역(simple connected region)의 대표적 문제인 캔틸레버보와 다중연결영역(multiple connected region)의 대표적인 문제인 개구부가 있는 사각평면에 대해 각각 수치해석을 수행한 결과 대폭적인 자유도의 감소에 비해 정확도 측면에는 기존의 방법과 차이가 없음을 볼 수 있었다. 본 논문에서 제시된 방법은 기저함수 고차화 저매개변수 직접 경계요소법(subparametric high order boundary element)과 이에 기초를 둔 저매개변수 고차 이중경계요소법(subparametric high order dual boundary element)의 초석이 될 수 있을 것이다.

저류함수모형의 민감도분석을 통한 경계조건 설정과 최적매개변수 결정에 대한 연구 (Establishment of the Parameter Range by Sensitivity Analysis and Determination of Optimal Parameter for Storage Function Model)

  • 송재현;김형수;홍일표;김상욱;김범준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1996-2000
    • /
    • 2006
  • 현재 국내 주요 하천의 홍수예경보시스템 운영과 다목적댐의 홍수조절관리를 위하여 수문학적 모형의 하나인 저류함수모형(storage function model)을 사용하고 있다. 저류함수모형은 산지가 많은 유역에 적합하도록 개발된 모형으로, 계산절차가 간편하고 홍수유출의 비선형성을 고려할 수 있는 방법이므로 선형모형보다 합리적이라고 알려져 있다. 그러나 실제 홍수사상에 저류함수모형을 적용하기 위해서는 적절한 매개변수의 적용이 필요하다. 현재까지 저류함수모형의 매개변수를 보정하기 위한 연구가 많이 되었지만, 실질적으로 보정된 매개변수를 실제 홍수사상에 적용함에 있어서는 많은 어려움이 존재한다. 따라서 이러한 문제점을 해결하고자 본 연구에서는 저류함수 모형 중 유역유출 매개변수를 첨두유량에 대한 상대민감도분석을 통하여 매개변수의 경계조건을 설정하고, 이 경계조건을 바탕으로 최적화기법(optimization technique)을 사용하여 과거 홍수사상에 대하여 보정을 수행하였다. 그리고 보정된 매개변수를 모의 홍수사상에 적용하기 위한 최적매개변수(optimal parameter) 결정을 위한 방법들을 제시 및 적용하여 비교 분석하였다.

  • PDF

ART1과 Delta-Bar-Delta 방법을 이용한 개선된 자가 생성 지도 학습 알고리즘 (Enhanced Self-Generation Supervised Learning Alrorithm Using ARTI and Delta-Bar-Delta Method)

  • 백인호;김태경;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.71-75
    • /
    • 2003
  • 오류 역전파 학습 알고리즘을 이용하여 영상 인식에 적용 할 경우에는 은닉층의 노드 수를 경험적으로 설정하므로, 학습시간과 지역최소화 및 정체현상이 발생한다. 그리고 ARTI 알고리즘은 입력 패턴과 저장 패턴간의 측정 방법인 유사성 검증 방법과 경계 변수의 설정에 따라 인식률이 좌우된다. 경계 변수의 값이 크면 입력 패턴과 저장 패턴사이에 약간의 차이만 있어도 새로운 카테고리(Category)로 분류하고, 반대로 경계 변수의 값이 적으면 입력 패턴과 저장 패턴 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 패턴들을 대략적으로 분류한다. 따라서 ART1 알고리즘을 영상 인식에 적용하기 위해서는 경계 변수를 경험적으로 설정하므로 인식률에 부정적인 영향을 갖는 문제점이 있다. 따라서 본 논문에서는 개선된 ART1 알고리즘과 지도 학습 방법을 결합하여 신경망의 은닉층 노드를 동적으로 변화시키는 자가 생성지도 학습 알고리즘을 제안한다. 제안된 신경망에서 입력층과 은닉층의 학습 구조에는 ART1 알고리즘을 개선하여 적용하고, 은닉층과 출력층의 학습 구조에는 은닉층에서 승자로 선택된 노드와 출력층 노드와 연결된 가중치만을 조정하고 Delta-Bar-Delta 알고리즘을 적용한다. 제안된 방법의 학습 성능을 분석하기 위하여 학생증 영상에서 추출한 학번 패턴 분류에 적용한 결과, 기존의 신경망 학습 알고리즘보다 학습 성능이 개선됨을 확인하였다.

  • PDF

등방압밀점토에서 항복경계면 소성모델의 매개변수 (The Parameters of the Bounding Surface Plasticity Model in the Isotropically Consolidated Clay)

  • 이영생;김원영
    • 한국지반공학회지:지반
    • /
    • 제12권4호
    • /
    • pp.21-32
    • /
    • 1996
  • 흙의 응력-변형률 거동을 더욱 근사적으로 예측하기 위하여,소성 증분이론에 한계상태 토질역학의 개념을 도입한 것이 항복-경계면 소성 모델이다. 이 모텔은 등방 압밀 흙의 거동을 묘사하기 위하여 두개의 타원과 하나의 쌍곡선으로 구성되었다. 따라서 사용된 여러가지 매개변수로 인하여 이 모델은 매우 복잡하다. 그러므로,실제 지반 문제에 이 모델을 적용하기 위하여는 이론의 정확한 이해와 숙련이 요구된다. 본 논문에서는,이 모델에 사용된 여러 매개변수들 중항복-경계면 형상 매개변수 R과 A, 투영 중심 매개변수 C를 변화시켜 그 결과를 수치해석하였다. 최종적으로 단조하중과 주기하중에 대한 각각의 민감도를 분석하였고 각 매개변수 값의 범위를 제안하였다.

  • PDF

개선된 유사성 측정 방법과 동적인 경계 변수를 이용한 ART1 알고리즘 (ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold)

  • 문정욱;김광백
    • 한국정보통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1318-1324
    • /
    • 2003
  • 기존의 ART1 알고리즘은 입력 패턴과 저장 패턴간의 유사성 검증 방법의 문제점과 경계 변수에 따라 클러스터의 수와 인식률이 좌우되는 문제점이 있다. 본 논문에서는 기존의 ART1 알고리즘을 개선하기 위하여 입력 패턴과 저장 패턴간의 Exclusive NOR의 놈 (norm) 비율을 사용하는 유사성 측정 방법과 퍼지 접속 연산자를 이용하여 유사성에 따라 경계변수를 동적으로 조정하는 방법을 적용한 개선된 ART1을 제안한다. 제안된 방법에서는 1의 개수 비율이 아니라 같은 값을 가진 노드의 비율을 사용하여 유사성을 측정하고 경계 변수는 Yager의 합 접속 연산자를 사용하여 동적으로 조정한다. 제안된 방법의 성능을 확인하기 위하여 26개의 영문 패턴 분류 문제와 잡음이 있는 패턴 인식 문제를 대상으로 실험한 결과, 제안된 방법이 기존의 ART1 알고리즘 보다 경계 변수의 설정에 따라 민감하게 반응하지 않았고 인식률에서도 개선된 것을 확인하였다.

효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘 (An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image)

  • 김광백
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.486-492
    • /
    • 2003
  • 퍼지 ART 알고리즘에서 경계 변수는 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 패턴과 저장 패턴 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 패턴과 저장 패턴 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 패턴을 저장 패턴의 카테고리로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경계 변수를 경험적으로 설정한다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식률을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용하는 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 인식 성능을 확인하기 위해서 운송 컨테이너 영상을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.