• Title/Summary/Keyword: 경계 변수

Search Result 680, Processing Time 0.03 seconds

Setting Method of Vigilance Parameter of ART2 Algorithm (ART2 알고리즘에서의 경계 변수 설정 방법)

  • Park, Seong-Yeol;Kim, Seong-Hoon;Kim', Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.31-34
    • /
    • 2009
  • ART2 알고리즘은 신경 회로망 모델로서 실시간 학습이 가능하여 저속 및 고속을 지원할 뿐만 아니라 지역 최소화(local minima) 문제가 발생하지 않는 장점을 갖는다. 그러나 ART2 알고리즘은 경계 변수 설정에 따라 클러스터의 수가 달라지며, 이러한 경계 변수 설정은 패턴의 분류와 인식 성능을 좌우한다. 따라서 본 논문에서는 ART2 알고리즘에서 효율적으로 경계 변수를 설정하기 위해 패턴셋 설정을 통한 경계 변수 설정 방법을 제안한다. 제안된 경계 변수 설정 방법의 성능을 평가하기 위해 숫자 및 영문 패턴을 대상으로 실험한 결과, 패턴 분류의 성능이 기존의 방식 보다 개선된 것을 확인하였다.

  • PDF

An Enhanced Fuzzy ART Algorithm for The Identifier Recognition from Shipping Container Image (운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 류재욱;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.365-369
    • /
    • 2002
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

A Study on ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold (개선된 유사성 검증 방법과 동적인 경계 변수를 이용한 ART1 알고리즘에 관한 연구)

  • 민지희;홍제형;김재용;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.193-197
    • /
    • 2003
  • 기존의 ART1 알고리즘은 입력 패턴과 저장 패턴간의 유사성 검증 방법의 문제점과 경계 변수에 따라 클러스터의 수와 인식률이 좌우되는 문제점이 있다. 본 논문에서는 기존의 ART1 알고리즘을 개선하기 위하여 입력 패턴과 저장 패턴간의 Exclusive NOR의 놈(norm) 비율을 사용하는 유사성 측정 방법과 퍼지 접속 연산자를 이용하여 유사성에 따라 경계변수를 동적으로 조정하는 방법을 적용한 개선된 ART1을 제안한다. 제안된 방법에서는 1의 개수 비율이 아니라 같은 값을 가진 노드의 비율을 사용하여 유사성을 측정하고 경계 변수는 Yager의 합 접속 연산자를 사용하여 동적으로 조정한다. 제안된 방법의 성능을 확인하기 위하여 26개의 영문 패턴 분류 문제와 잡음이 있는 패턴 인식 문제를 대상으로 실험한 결과, 제안된 방법이 기존의 ART1 알고리즘 보다 경계 변수의 설정에 따라 민감하게 반응하지 않았고 인식률에서도 개선된 것을 확인하였다.

  • PDF

An Enhanced Fuzzy ART Algorithm for Effective Image Recognition (효과적인 영상 인식을 위한 개선된 퍼지 ART 알고리즘)

  • Kim, Kwang-Baek;Park, Choong-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.262-267
    • /
    • 2007
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

  • PDF

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Establishment of the Parameter Range by Sensitivity Analysis and Determination of Optimal Parameter for Storage Function Model (저류함수모형의 민감도분석을 통한 경계조건 설정과 최적매개변수 결정에 대한 연구)

  • Song, Jae-Hyun;Kim, Hung-Soo;Hong, Il-Pyo;Kim, Sang-Ug;Kim, Bum-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1996-2000
    • /
    • 2006
  • 현재 국내 주요 하천의 홍수예경보시스템 운영과 다목적댐의 홍수조절관리를 위하여 수문학적 모형의 하나인 저류함수모형(storage function model)을 사용하고 있다. 저류함수모형은 산지가 많은 유역에 적합하도록 개발된 모형으로, 계산절차가 간편하고 홍수유출의 비선형성을 고려할 수 있는 방법이므로 선형모형보다 합리적이라고 알려져 있다. 그러나 실제 홍수사상에 저류함수모형을 적용하기 위해서는 적절한 매개변수의 적용이 필요하다. 현재까지 저류함수모형의 매개변수를 보정하기 위한 연구가 많이 되었지만, 실질적으로 보정된 매개변수를 실제 홍수사상에 적용함에 있어서는 많은 어려움이 존재한다. 따라서 이러한 문제점을 해결하고자 본 연구에서는 저류함수 모형 중 유역유출 매개변수를 첨두유량에 대한 상대민감도분석을 통하여 매개변수의 경계조건을 설정하고, 이 경계조건을 바탕으로 최적화기법(optimization technique)을 사용하여 과거 홍수사상에 대하여 보정을 수행하였다. 그리고 보정된 매개변수를 모의 홍수사상에 적용하기 위한 최적매개변수(optimal parameter) 결정을 위한 방법들을 제시 및 적용하여 비교 분석하였다.

  • PDF

Enhanced Self-Generation Supervised Learning Alrorithm Using ARTI and Delta-Bar-Delta Method (ART1과 Delta-Bar-Delta 방법을 이용한 개선된 자가 생성 지도 학습 알고리즘)

  • 백인호;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.71-75
    • /
    • 2003
  • 오류 역전파 학습 알고리즘을 이용하여 영상 인식에 적용 할 경우에는 은닉층의 노드 수를 경험적으로 설정하므로, 학습시간과 지역최소화 및 정체현상이 발생한다. 그리고 ARTI 알고리즘은 입력 패턴과 저장 패턴간의 측정 방법인 유사성 검증 방법과 경계 변수의 설정에 따라 인식률이 좌우된다. 경계 변수의 값이 크면 입력 패턴과 저장 패턴사이에 약간의 차이만 있어도 새로운 카테고리(Category)로 분류하고, 반대로 경계 변수의 값이 적으면 입력 패턴과 저장 패턴 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 패턴들을 대략적으로 분류한다. 따라서 ART1 알고리즘을 영상 인식에 적용하기 위해서는 경계 변수를 경험적으로 설정하므로 인식률에 부정적인 영향을 갖는 문제점이 있다. 따라서 본 논문에서는 개선된 ART1 알고리즘과 지도 학습 방법을 결합하여 신경망의 은닉층 노드를 동적으로 변화시키는 자가 생성지도 학습 알고리즘을 제안한다. 제안된 신경망에서 입력층과 은닉층의 학습 구조에는 ART1 알고리즘을 개선하여 적용하고, 은닉층과 출력층의 학습 구조에는 은닉층에서 승자로 선택된 노드와 출력층 노드와 연결된 가중치만을 조정하고 Delta-Bar-Delta 알고리즘을 적용한다. 제안된 방법의 학습 성능을 분석하기 위하여 학생증 영상에서 추출한 학번 패턴 분류에 적용한 결과, 기존의 신경망 학습 알고리즘보다 학습 성능이 개선됨을 확인하였다.

  • PDF

The Parameters of the Bounding Surface Plasticity Model in the Isotropically Consolidated Clay (등방압밀점토에서 항복경계면 소성모델의 매개변수)

  • 이영생;김원영
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.21-32
    • /
    • 1996
  • To predict the stress-strain behavior of the soil more approximately, the concept of the critical state soil mechanics was added to the plasticity increment theory in the bounding surface Plasticity model. This model was constituted with two ellipse and one hyperbola in older to describe the behaviour of the isotropically consolidated soil. Thus, this model is very complicate due to the various parameters used. Therefore, the accurate understanding and skill of the theory is required in order to apply this model to the practical geotechnical problems. In the present paper, the bounding surface shape paraiheter R and A, the mapping center parameter C among various parameters used were varied and the results were numerically analized. Finally, each sensitivity with respect to monotonic and cyclic loading was analized and the range of the value of the each parameter was proposed.

  • PDF

ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold (개선된 유사성 측정 방법과 동적인 경계 변수를 이용한 ART1 알고리즘)

  • 문정욱;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1318-1324
    • /
    • 2003
  • There are two problems in the conventional ART1 algorithm. One is in similarity testing method of the conventional ART1 between input patterns and stored patterns. The other is that vigilance threshold of conventional ART1 influences the number of clusters and the rate of recognition. In this paper, new similarity testing method and dynamical vigilance threshold method are proposed to solve these problems. The former is similarity test method using the rate of norm of exclusive-NOR between input patterns and stored patterns and the rate of nodes have equivalence value, and the latter method dynamically controls vigilance threshold to similarity using fuzzy operations and the sum operation of Yager. To check the performance of new methods, we used 26 alphabet characters and nosed characters. In experiment results, the proposed methods are better than the conventional methods in ART1, because the proposed methods are less sensitive than the conventional methods for initial vigilance and the recognition rate of the proposed methods is higher than that of the conventional methods.

An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image (효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 김광백
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.486-492
    • /
    • 2003
  • The vigilance threshold of conventional fuzzy ART algorithm decide whether to permit the mismatch between any input pattern and stored pattern. If the vigilance threshold was large, despite of little difference among input and stored patterns, the input pattern may be classified to new category. On the other hand, if the vigilance threshold was small, the similarity between two patterns may be accepted in spite of lots of difference and the input pattern are classified to category of the stored pattern. Therefore, the vigilance threshold for the image recognition must be experientially set for the good result. Moreover, it may occur in the fuzzy ART algorithm that the information of stored patterns is lost in the weight-adjusting process and the rate of pattern recognition is dropped. In this paper, I proposed the enhanced fuzzy ART algorithm that supports the dynamical setting of the vigilance threshold using the generalized intersection operator of fuzzy logic and the weight value being adaptively set in proportional to the current weight change and the previous weight by reflecting the frequency of the selection of winner node. For the performance evaluation of the proposed method, we applied to the recognition of container identifiers from shipping container images. The experiment showed that the proposed method produced fewer clusters than conventional ART2 and fuzzy ART algorithm. and had tile higher recognition rate.