Generally, the doctors manually delineated the prostate boundary seeing the image by their eyes, but the manual method not only needed quite much time but also had different boundaries depending on doctors. To reduce the effort like them the automatic delineating methods are needed, but detecting the boundary is hard to do since there are lots of uncertain textures or speckle noises. There have been studied in SVM, SIFT, Gabor texture filter, snake-like contour, and average-shape model methods. Besides, there were lots of studies about 2 and 3 dimension images and CT and MRI. But no studies have been developed superior to human experts and they need additional studies. For this, this paper proposes a method that delineates the boundary predicting its texture features and its average distribution on the prostate image. As result, we got the similar boundary as the method of human experts.
The research for extracting man-made features such as building and road from the aerial photograph or satellite imagery has been performed actively. As lately the resolution of digital aerial photographs was improved, unwanted features(noise) would be often detected. An edge detection algorithm is developed to make up for such a noise problem, make boundaries of wanted objects clear and extract only needed features. The algorithm developed in this research performs separating RGB channels, differencing between channels, transforming in to binary images, excluding noises and restoring shapes, and edge extraction in order. The images to be used for edge detection are prepared through bundle adjustment, DTM extraction, orthorectification and mosaicking. The roof edges of small building on preprocessed digital aerial orthophotos were extracted using the algorithm developed in this study. The validity of the algorithms was proved by comparing edge results of small building extracted in this study with those of conventional methods.
High-resolution aerial color image offers great possibilities for geometric and semantic information for spatial data generation. However, shadow casts by buildings and trees in high-density urban areas obscure much of the information in the image giving rise to potentially inaccurate classification and inexact feature extraction. Though many researches have been implemented for solving shadow casts, few studies have been carried out about the extraction of features hindered by shadows from aerial color images in urban areas. This paper presents a asphalt road boundary extraction technique that combines information from aerial color image and LIDAR (LIght Detection And Ranging) data. The following steps have been performed to remove shadow effects and to extract road boundary from the image. First, the shadow regions of the aerial color image are precisely located using LEAR DSM (Digital Surface Model) and solar positions. Second, shadow regions assumed as road are corrected by shadow path reconstruction algorithms. After that, asphalt road boundary extraction is implemented by segmentation and edge detection. Finally, asphalt road boundary lines are extracted as vector data by vectorization technique. The experimental results showed that this approach was effective and great potential advantages.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.92-93
/
2016
정확한 변위정보를 추정하기 위해 다양한 비용 값 계산함수 또는 비용 값 합산 방법들이 개발되었다. 본 논문에서는 비용 값 계산을 위해 좌, 우영상의 기울기와 SAD(Sum of Absolute Differences)를 이용하며 비용 값 합산을 위해 가이드 영상 필터링을 사용한다. 가이드 영상 필터링은 가이드 영상의 종류에 따라 필터링결과가 크게 변하게 되는데, 스테레오 정합에 사용된 원본 입력 영상을 가이드 영상으로 사용할 경우 정확한 화소 값을 가지고 있기 때문에 경계영역을 보존하며 필터링 수행이 가능하다. 하지만 가이드 필터링은 가이드 영상으로부터 미리 지정해준 이웃한 화소와의 거리와 색상차이의 분산 값만을 고려하여 필터링을 수행하기 때문에 설정 변수 값에 매우 의존적인 특성을 갖는다. 가이드 필터링 과정에서 변수에 대한 의존성을 낮추고 경계영역의 정확도를 높이기 위해 우선 평활화 필터를 이용하여 경계영역을 추출한다. 원본 입력영상을 사용하여 경계영역을 추출할 경우 객체 내부의 많은 텍스처 영역의 정보까지 추출되지만, 평활화 필터를 이용할 경우 정확한 경계 영역의 정보만을 추출 할 수 있다. 추출된 경계영역에 대해서만 높은 가중치를 사용한 뒤 기존의 가이드 영상 필터링과 혼합하여 최종 비용 값을 합산한다. 제안한 방법을 사용하여 경계영역의 정확도가 향상된 최종 변위 지도를 획득할 수 있었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.6
/
pp.865-871
/
2022
In this paper, we propose a method of extracting prostate region using morphological characteristics of ultra-sonic image of prostate. In the first step of the proposed method, the edge area of the prostate image is extracted. The histogram of ultra-sonic image is used to extract base objects to detect the upper edge of prostate region by altering the contrast of the image, then, the lower edges of the extracted base objects are connected by using monotone cubic spline interpolation to extract the upper edge. Step 2, Otsu's binarization is applied to the region under the extracted upper edge of the prostate ultra-sonic image to extract the lower edge of prostate. In the last step, the upper and the lower edges are connected to extract prostate region and by comparing the extracted region of prostate with the one measured manually, the result showed that the morphological characteristics of prostate in ultrasonic image can be utilized to extract the prostate region.
최근에는 LiDAR 시스템의 등장으로 기존의 항공사진측량에 비하여 효율적이고, 경제적으로 도시지역의 수치표고자료를 효과적으로 구축할 수 있게 되었으나, 도시지역에서는 다양한 형태의 객체들이 모두 포함된 DSM(Digital Surface Model) 형식의 자료를 취득하게 된다. 따라서, 홍수범람예측에 있어서의 인공지물의 영향 해석 등을 위하여 건물이 제거된 지형에 관한 상세한 정보를 제공하기 위해서는 DSM으로부터 DEM(Digital Elevation Model)을 추출하기 위한 전처리 과정이 필요하다. 본 연구는 LiOAR 시스템으로부터 취득된 도시지역에 대한 DSM으로부터 건물 등이 제거된 DEM을 추출하기 위한 연구로서 영상처리기법의 경계검출 알고리즘을 적용하여 건물 등의 지물들에 대한 경계를 추출하였으며, 선행연구에서 건물로 추출된 지역에 대하여 보간법을 적용함으로써 발생하는 원시 DSM 자료의 변형에 따른 대안으로써, 추출된 경계에 대여 평균값 필터링, 중간 값 필터링, 최소 값 필터링을 각각 적용함으로써 원시 DSM 자료의 변형을 최소화하여 건물 등의 지물들을 제거하였으며, LiDAR DSM으로부터 DEM을 제작하는 과정을 간략화, 자동화하였다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.5
/
pp.28-34
/
2007
A histogram-based road border line extractor is proposed for an efficient road extraction from the high-resolution satellite imagery. The road border lines are extracted from an edge strength map based on the directional histogram difference between the road and the non-road region. The straight and the curved roads are extracted hierarchically from the edge strength map of the original image and the segmented road cluster images, and the road network is constructed based on the connectivity. Unlike the conventional approaches based on the spectral similarity, the proposed road extraction method is more robust to noise because it extracts roads based on the histogram, and is able to extract both the location and the width of roads. In addition, the proposed method can extract roads with various spectral characteristics by identifying the road clusters automatically. Experimental results on IKONOS multi-spectral satellite imagery with high spatial resolution show that the proposed method can extract the straight and the curved roads as well as the accurate road border lines.
Park, Dong-In;Kim, Tae-Won;Ko, Yuh-Ho;Choi, Jae-Gark
Journal of Korea Multimedia Society
/
v.13
no.10
/
pp.1463-1473
/
2010
In this paper, we propose a modified watershed algorithm to extract more correct edge and reduce processing time. Two new algorithms are proposed in this paper. The first one is applying two conventional watershed expansion methods known as rainfall and immersion simulation jointly. We analyze the advantage and problem of each simulation and then propose a new expansion method that keeps the advantage and removes the problem in order to extract more correct edge and reduce processing time. The second is a new priority decision algorithm to obtain more correct edge of a region. Some zero-crossing points of gradient are expected to be edge of a region but the conventional method has a limitation that it cannot extract those points as edge. Therefore we propose a new priority decision algorithm for watershed in order to get more correct edge. We compare the proposed method with the conventional method through experiments and prove that the proposed method can extract more correct edge of region.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.3
/
pp.305-312
/
2012
This paper aims at improving the accuracy and computational efficiency in reconstructing building boundaries from airborne Lidar points. We proposed an adaptive convex hull algorithm, which is a modified version of local convex hull algorithm in three ways. The candidate points for boundary are first selected to improve efficiency depending on their local density. Second, a searching-space is adjusted adaptively, based on raw data structure, to extract boundary points more robustly. Third, distance between two points and their IDs are utilized in detecting the seed points of inner boundary to distinguish between inner yards and inner holes due to errors or occlusions. The practicability of the approach were evaluated on two urban areas where various buildings exist. The proposed method showed less shape-dissimilarity(8.5%) and proved to be two times more efficient than the other method.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.1
/
pp.49-58
/
2012
Buildings become complex and diverse with time. It is difficult to extract individual buildings using only an optical image, because they have similar spectral characteristics to objects such as vegetation and roads. In this study, we propose a method to extract building area and boundary through integrating airborne Light Detection and Ranging(LiDAR) data and aerial images. Firstly, a binary edge map was generated using Edison edge detector after applying Adaptive dynamic range linear stretching radiometric enhancement algorithm to the aerial image. Secondly, building objects on airborne LiDAR data were extracted from normalized Digital Surface Model and aerial image. Then, a temporary building areas were extracted by overlaying the binary edge map and building objects extracted from LiDAR data. Finally, some building boundaries were additionally refined considering positional accuracy between LiDAR data and aerial image. The proposed method was applied to two experimental sites for validation. Through error matrix, F-measure, Jaccard coefficient, Yule coefficient, and Overall accuracy were calculated, and the values had a higher accuracy than 0.85.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.