• Title/Summary/Keyword: 경계의 형태

Search Result 1,357, Processing Time 0.029 seconds

STS and the Innovation of Sociology: Focusing on Actor-Network Theory (STS(과학기술학)와 사회학의 혁신: 행위자-연결망이론(ANT)을 중심으로)

  • Kim Hwan-Suk
    • Journal of Science and Technology Studies
    • /
    • v.1 no.1 s.1
    • /
    • pp.201-234
    • /
    • 2001
  • Sociology(or social science in general) is often diagnosed as in the state of 'crisis' after the collapse of socialism and the erosion of national societies because of rapid globalization. This paper introduces some recent work within science and technology studies(STS) and discusses its potentials to reinvigorate sociology. Although sociologists have rarely regarded STS as contributing to 'mainstream' issues in sociology, an increasing number of STS writers and sociologists have recently started to notice such possibilities. One main reason of this recent change is that STS is no longer merely concerned to convey substantive findings about science and technology, but instead attempts to reconstruct key notions of sociology such as 'social', 'society' and 'agency'. It is in this respect that the discussion below aims to introduce, discuss, and assess the potential contribution of some recent work of STS to sociology. In particular, it is 'actor-network theory'(ANT) that explicitly attempts to examine and suggest the ways in which STS ran help innovate sociology. One major characteristics of ANT is to impute 'agency' to things(nonhumans) unlike traditional sociology. ANT argues that if sociology studies heterogeneous relationships between humans and nonhumans instead of human relations only, it can become once again a vigorous discipline which is able to provide alternative worlds central to the basis of sociology. So this paper focuses on, not the diverse approaches of STS, the characteristics of ANT and its potential contribution to sociology. The author concludes that ANT can not only rejuvenate sociology by implicating new forms of alternative worlds but also open the possibility to contribute to the democratic reformulation of human-nonhuman relationships.

  • PDF

CUTTING EFFICACY OF Er:YAG LASER AND CONVENTIONAL BUR IN DECIDUOUS AND PERMANENT TEETH (Er:YAG laser와 Conventional bur의 유치와 영구치 치아삭제효과 비교)

  • Park, In-Cheon;Lee, Chang-Seop;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.272-285
    • /
    • 2003
  • This study was conducted to observe the microscopic structures of cavities formed after ablation of primary teeth, permanent teeth, enamel and dentin in using a bur and cavities formed after ablation using laser and the following results were obtained after comparing the effects of ablation. Using a #330 bur and Er:YAG laser irradiated at 150 mJ, 200 mJ, 250 mJ and 300 mJ all at the frequency of 5 Hz, 1 mm enamel and dentin samples were ablated and the ablation time was measured. In order to measure the surfaces ablated, 5 each of primary teeth and permanent teeth were ablated using a #330 bur and Er:YAG laser at 150 mJ, 200 mJ, 250 mJ and 300 mJ for 1 sec and the cross section and vertical section were observed. The following results were obtained : 1. Cutting time of Er:YAG laser was longer than that of conventinal high-speed bur regardless of teeth type. 2. Cutting on enamel, Cutting time of conventional high-speed bur in deciduous teeth was longer than in permanent teeth(P<0.05). But Er:YAG laser was not showed any difference between the deciduous and permanent teeth(P>0.05). 3. Cutting on dentin, Cutting time of conventional high-speed bur in permanent teeth was longer than deciduous teeth. Er:YAG laser of 150 mJ, 5 Hz in permanent teeth was longer than in deciduous teeth(p<0.05). But laser of other power did not showed mean difference. 4. The cavity surface treated with the convetional high-speed bur revealed a relatively flat appearance, almost covered with a debris-like smear layer. Cavity wall showed striped appearance because of blade of bur. 5. The cavity surface treated by the Er:YAG laser system was irregular or rough surface with the absence charring, carbonization, or cracking of the dentin. In addition, there was an absence of a smear layer. Cavity floor was round and relatively smooth. According to these results, cutting time of Er:YAG laser was almostly same in permanent and deciduous teeth, but more effective in dentin than enamel. Cutting the sample, Er:YAG laser was needed more time than conventional bur. But SEM findings suggested that laser device produced favorable surface characteristic(i.e, no smear layer, irregular surface, cracking).

  • PDF

The Influence of Attachment Type on the Distribution of Occlusal Force in Implant Supported Overdentures (하악 임플란트 오버덴쳐에서 어태치먼트 종류에 따른 응력분포)

  • Sung, Chai-Ryun;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.375-390
    • /
    • 2009
  • Statement of problem: Implant supported overdenture is accepted widely as a way to restore edentulous ridge providing better retention and support of dentures. Various types of attachment for overdenture have been developed. Purpose: The purpose of this study was to investigate the influence of attachment type in implant overdentures on the biomechanical stress distribution in the surrounding bone, prosthesis and interface between implant and bone. Material and methods: Finite element analysis method was used. Average CT image of mandibular body(Digital $Korea^{(R)}$, KISTI, Korea) was used to produce a mandibular model. Overdentures were placed instead of mandibular teeth and 2mm of mucosa was inserted between the overdenture and mandible. Two implants($USII^{(R)}$, Osstem, Korea) were placed at both cuspid area and 4 types of overdenture were fabricated ; ball and socket, Locator, magnet and bar type. Load was applied on the from second premolar to second molar tooth area. 6 times of finite element analyses were performed according to the direction of the force $90^{\circ}$, $45^{\circ}$, $0^{\circ}$ and unilateral or bilateral force applied. The stress at interface between implants and bone, and prosthesis and the bone around implants ware compared using von Mises stress. The results were explained with color coded graphs based on the equivalent stress to distinguish the force distribution pattern and the site of maximum stress concentration. Results: Unilateral loading showed that connection area between implant fixture and bar generated maximum stress in bar type overdentures. Bar type produced 100 Mpa which means the most among 4 types of attachments. Bilateral loading, however, showed that bar type was more stable than other implants(magnet, ball and socket). 26 Mpa of bar type was about a half of other types on overdenture under $90^{\circ}$ bilateral loading. Conclusions: In any directions of stress, bar type was proved to be the most vulnerable type in both implants and overdentures. Interface stress did not show any significant difference in stress distribution pattern.

Spur-like Lesion on the Lateral Tibial Condyle - A Sign of Chronic ACL tear - (경골 외과의 골극 유사 병변 - 만성 전방 십자 인대 파열의 징후 -)

  • Cho Sung-Do;Ko Sang-Hun;Hwang Su-Yeon;Yang Jung-Hun
    • Journal of the Korean Arthroscopy Society
    • /
    • v.7 no.2
    • /
    • pp.201-205
    • /
    • 2003
  • Purpose : Authors experienced cases of chronic ACL tear with spur-like lesion on the tibial condyle which is different from the lateral capsular sign and degenerative change and evaluated the significance of 'spur-like lesion' in relations with chronic ACL injury. Material and Method : We have 5 patients with spur-like lesion on the lateral tibial condyle in simple radiogram. The location, shape and size of the lesion were studied using radiogram and MRI. Cause of injury, associated injury and chronicity of the ACL tear were analyzed. All 5 patients were male, and mean age was 33.8 $(17\~46)$ years. Result : The spur-like lesion was located from 3.8 mm(avg.) below the articular surface of the lateral tibial condyle to the apex of the fibular head and protruded laterally or inferolaterally from just posterior to the Gerdy's tubercle with a round or sharp-end triangular shape. Average length was 6 mm and average width ortho base was 9.2 mm. The cause of injury were sports jnjury 4 cases and traffic accident in one. The chronicity of the ACL tear was average 10.7(8 months$\~$23 years) years and medial meniscus tear was shown in all cases and lateral meniscus tear in three. Conclusion : We suggest that a patient who has a history of trauma with spur-like lesion on the lateral tibial condyle of the knee is expected to have chronic ACL tear.

  • PDF

Evolution of Mechanical Properties through Various Heat Treatments of a Cast Co-based Superalloy (주조용 코발트기 초내열합금의 열처리에 따른 기계적 특성 변화)

  • Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Do, Jeong-Hyeon;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The effects of a heat treatment on the carbide formation behavior and mechanical properties of the cobalt-based superalloy X-45 were investigated here. Coarse primary carbides formed in the interdendritic region in the as-cast specimen, along with the precipitation of fine secondary carbides in the vicinity of the primary carbides. Most of the carbides formed in the interdendritic region were dissolved into the matrix by a solution treatment at $1274^{\circ}C$. Solutionizing at $1150^{\circ}C$ led to the dissolution of some carbides at the grain boundaries, though this also caused the precipitation of fine carbides in the vicinity of coarse primary carbides. A solution treatment followed by an aging treatment at $927^{\circ}C$ led to the precipitation of fine secondary carbides in the interdendritic region. Very fine carbides were precipitated in the dendritic region by an aging heat treatment at $927^{\circ}C$ and $982^{\circ}C$ without a solution treatment. The hardness value of the alloy solutionized at $1150^{\circ}C$ was somewhat higher than that in the as-cast condition; however, various aging treatments did not strongly influence the hardness value. The specimens as-cast and aged at $927^{\circ}C$ showed the highest hardness values, though they were not significantly affected by the aging time. The specimens aged only at $982^{\circ}C$ showed outstanding tensile and creep properties. Thermal exposure at high temperatures for 8000 hours led to the precipitation of carbide at the center of the dendrite region and an improvement of the creep rupture lifetimes.

Analysis of Orthotropic Body under Ultimate Moment Load (극한(極限)모멘트 하중(荷重)을 받는 이방성(異方性) 구조체(構造體)의 해석(解析))

  • Chang, Suk Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.95-105
    • /
    • 1985
  • This dissertation presents an exact solution for the normal and shearing stresses of an orthotropic plane body loaded by a moment load. The solution satisfies the conditions of equilibrium compatibility equations concurrently and is governing for the body being in the elasto-plastic state. An Airy stress function is introduced to solve the problem related to an orthotropic half-infinite plane under a moment load. All the equations for orthotropy must be degenerated into the expressions for isotropy when orthotropic constants are replaced by isotropic ones. The author has evaluated all the equations of orthotropy and succeeded in obtaining exactly identical expressions to the equations of isotropy which were derived independently by of L'hosptials rule. The analytical results of isotropy are compared with the simple results of other investigator. Since moment Load under the elastic state and plastic state only is a particular case of moment load under the elasto-plastic state. All the equations of elasto-plastic state case are degenerated into the expressions for the each case. The formal solution is expressed in terms of closed form. The orthotropic constants are evaluated for two kinds and two different orientations of the grain of wood and two kinds of structures. The numerical results for orthotropy are evaluated for one kind and two different orientations of three-layered ply wood. The distribution of normal and shearing stresses are shown in figures. It is noted that the distribution of stresses of orthotropic materials depends on the type of materials and orientations of the grain and stiffening.

  • PDF

A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees (대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석)

  • 김봉주;이성재;권순용;탁계래;이권용
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.401-410
    • /
    • 2003
  • This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.

Deformation structures of the Jurassic Ogcheon granite and the Honam Shearing, Ogcheon Area, Korea (옥천지역 쥬라기 옥천화강암의 변형구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2010
  • The Jurassic Daebo Ogcheon granite is distributed in the Ogcheon area which is located in the central part of the Ogcheon Belt, Korea. This paper newly examines the timing of Honam shearing on the basis of the petrofabric researches on the deformation structures of the Ogcheon granite. The structural shape of Ogcheon granite is mainly characterized by a wedge shaped of E-W trend and an elongate shape of ENE trend in geological map and by contacts parallel to the regional S1 foliation in the host Ogcheon supergroup. It indicates that the pluton was permittedly emplaced after the S1 formation. The main deformation structures are marked by a solid-state tectonic foliation of N-S trend, which passes through the contact of the pluton, and by an aplitic dyke of E-W trend, and by sinistral, NW and E-W oriented shear zones on the eastern border of the pluton. The petrofabric study on the main deformation structures suggests that the tectonic foliation and the aplitic dyke were formed by the Honam dextral strike-slip shearing of (N)NE trend at ca. $500{\sim}450^{\circ}C$ deformation temperature, and that the sinistral shear zones could be induced by the dextral rotation of the pluton from its original site of intrusion, that is, by the shear strain which is due to sliding of the pluton past the host rocks. The history of emplacement and deformation of the Ogcheon granite and the previous results on the timing of Honam shearing would be newly established and reviewed as follows. (1) Early~Middle Jurassic(187~170 Ma); intrusion of syntectonic foliated granite related to Early Honam shearing, (2) Middle Jurassic(175~166 Ma); main magmatic period of Jurassic granitoids, the permitted emplacement of the Ogcheon granite, (3) Middle~Late Jurassic(168~152 Ma); main cooling period of Jurassic granitoids, the deformation of the Ogcheon granite related to Late Honam shearing. Thus, this study proposes that the Honam shear movement would occur two times at least during 187~152 Ma (ca. 35 Ma) through the intertectonic phase of 175~166 Ma.

The Contact Metamorphism Due to the Intrusion of the Ogcheon and Boeun granites (옥천화강암과 보은화강암 관입에 의한 접촉변성작용)

  • 오창환;김창숙;박영도
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.133-149
    • /
    • 1997
  • In the metapelites around the Ogcheon granite, the metamorphic grade increases from the biotite zone through the andalusite zone to the sillimanite zone towards the intrusion contact. In the metabasites around the Boeun granite, the metamorphic grade increases from transitional zone between the greenchist and amphibolite facies through the amphibolite facies to the upper amphibolite facies towards the intrusion contact. In the Doiri area locating near the intrusion contact of the Boeun granite, sillimanite- and andalusite-bearing metapelites are found with in 500 m away from the contact. The evidence described above indicates that the Ogcheon and Boeun granites caused low-P/T type contact metamorphism to the country rocks. The P-T condition of contact metamorphism due to the intrusion of the Ogcheon granite is $540{\pm}40^{circ}C, 2.8{\pm}0.9$ kb. The temperature condition of contact metamorphism due to the intrusion of the Boeun granite is $698{\pm}28^{\circ}C$. The wide compositional range of amphibole and plagioclase in the metabasites around the Boeun granite is due to the immisibility gab of amphibole and plagioclase and unstable relict composition resulted from an incomplete metamorphic reaction. The compositional range of stable amphibole and plagioclase decreases as a metamorphic grade increases due to a close of immiscibility gab. The thermal effect of contact metamorphism due to the intrusion of the Ogcheon and Boeun granites, are calculated using the CONTACT2 program based on a two dimensional finite difference method. In order to estimate the thermal effect of an introduced pluton, a circle with 10 km diameter and a triangle with 20 km side are used for the intrusion geometries of the Ogcheon granite and the Boeun granite, respectively. The results from the field and modeling studies suggest that the intrusion temperatures of the Ogcheon granite close to $800^{\circ}C$ and the intrusion temperature of the Boeun granite is higher than $1000^{\circ}C$. However, the intrusion temperatures can be lower than the suggested temperature, if the geothermal gradient prior to the intrusion of the Ogcheon and Boeun granites was higher than the normal continental grothermal gradient.

  • PDF

Structural characteristics of Humboldt Range, northwest Nevada, U. S. A. (미국 북서 네바다주 험볼트 산맥의 구조분석)

  • 정상원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.131-148
    • /
    • 1999
  • Characteristics and complex structures in the northwest Nevada, U.S.A. are de-veloped due to relative tectonic movement of major tectonostratigraphic terranes. Theresearch area is composed of autochthonous rocks of both Early Triassic Koipato Group and Middle Triassic Star Peak Group, which is located in the Humboldt Range, northwest Nevada, U.S.A. The present research is focused on deformation history, related fabric development, and state of regional paleostress during the Jurassic to Late Cretaceous. The Triassic autochthonous rocks in the Humboldt Range, Nevada, U.S.A. display polyphase deformation due to E- to ESE-directed tectonic transport of the Fencemaker allochthon over autochthonous rocks of the Humboldt Range. Structures involving the Mesozoic foreland deformation are development of intense foliation, different styles of folds, minor thrusts, transposed layering, and strong mylonitization. These tectonic structures are mostly developed along the western flank of the Humboldt Range, and are reported as the first deformation of the Mesozoic foreland in the Humboldt Range, Nevada, U.S.A. Regional principal stress(${\sigma}_1$) is interpreted to be E to ESE between the Jurassic and Early Cretaceous on the basis of orientations of strongly developed $D_1$ structures. The deformation during the Middle to Late Cretaceous, is characterized by development of consistent N- to NNE-trending metamorphic quartz veins, and shear zones parallel to pre-existing $D_1$ foliation. Orientations of metamorphic quartz veins as well as other kinematic indicators are N to NNE and are interpreted as those of regional principal stress(${\sigma}_1$) during the Late Cretaceous. The sense of shear applied in the Humbololt Range is dextral and is caused by reactivation of early-formed $D_1$ structures. These results reflect counterclockwise rotation of regional principal paleostress in the Humboldt Range from the Jurassic to Late cretaceous. Finally, development of both shear band cleavage and S/C mylonitic fabrics indicates that the shear zones in the Humboldt Range reflect involvement of enhanced non-coaxial flow during bulk shortening in mylonitic formation.

  • PDF