• Title/Summary/Keyword: 결합 모델

Search Result 2,887, Processing Time 0.033 seconds

개선된 봉네트

  • Lee, Jay-J.;Kwon, Jae-Ook;Sin, Bong-Kee;Kim, Jin-H.
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.189-194
    • /
    • 1994
  • 봉네트는 온라인 한글 필기 글씨 모델이다. 글씨를 자소와 연결획의 결합구조로 보고, 각 자소 및 연결획 모델을 은닉 마르코프 모델을 사용하여 구성한 후, 이들을 한글의 제자 원리에 따라 네트워크 구조로 설계한 모델이다. 본 논문에서는 모델간의 분별력 부족과 입력 정보의 취약등에 기인한 약점을 해결하기 위하여 구조적 인식 방법을 결합한 봉네트의 확장과, 연속 필기 글씨의 처리를 위한 순환 구조로의 확장등, 지난 일년 동안 수행되었던 실험 및 결과를 소개하고, 앞으로의 연구 방향을 논의하고자 한다.

  • PDF

Estimating Defects of Software During Operational Use (소프트웨어의 운전중 결함 예측 기법)

  • Che, Gyu-Shik;Jang, Won-Seok
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.397-400
    • /
    • 2001
  • 본 논문에서는 운전 단계중의 상용소프트웨어 성장활용을 설명한 수 있고 또 현장 고장 데이타로부터 활용성장을 예측하는데 관계되는 인자를 결합할 수 있는 새로운 모델을 개발한다. 이 모델은 상용 소프트웨어의 실제 황용이 시간의 멱수 함수로 나타난다는 가정으로부터 생기는 웨이블 분포에 근거한다. 선형신뢰도모델은 잔여결함의 평균크기와 작업량이 일정하고 겉보기 결함밀도가 실제 결함밀도와 동일하다는 가정 하에 유도된다. 기하학적모델은 결함을 수정함에 따라 평균결합크기가 기하학적으로 감소한다는 가정에 있어서 파이가 있다. 한편, Rayleigh모델은 잔여 결함의 평균크기가 시간에 따라 선형적으로 감소한다는 가정에 있어서 차이가 있다. 본 논문에서는 소프트웨어의 신뢰도 요인의 거동을 가정하여 이러한 다양성을 수용하기 위한 모델링을 하였다.

  • PDF

A Study on Combined IDS Model For Performance Improving (성능 향상을 위한 통합 침입 탐지시스템에 대한 연구)

  • Hong, Seong-Kil;Won, Il-Yong;Song, Doo-Heon;Lee, Chang-Hun
    • Annual Conference of KIPS
    • /
    • 2003.11c
    • /
    • pp.1843-1846
    • /
    • 2003
  • 네트워크 기반의 공격 및 비정상 행위를 정확히 탐지하고 판단하기 위한 기존의 탐지 모델은 공격 룰셋의 패턴매칭 기반인 Misuse Detection System을 사용하고 있다. 그러나 이 시스템의 특성상 새로운 공격의 미탐지 및 공격 오인등으로 False Positive 가 높다는 단점이 있다. 본 논문은 전체 시스템의 성능을 판정하는 False Positve 에러율을 줄여 성능을 향상하기 위해 Meachine Learning기반의 Anomaly Detection System 을 결합한 새로운 탐지 모델을 제안하고자 한다. Anomaly Detection System 은 정상행위에 대한 비교적 높은 탐지율과 새로운 공격에 대한 탐지가 용이하다. 본 논문에서는 각 시스템의 탐지모델로 Snort 와 인스턴스 기반의 알고리즘인 IBL 을 사용했으며, 결합모델의 타당성을 검증하기 위해서 각 탐지 모델의 False Positive와 False Negative 에러율을 측정하였다.

  • PDF

Anomaly Detection with C3D-based Optical Flow in CCTV (C3D 기반의 광학 흐름을 결합한 CCTV에서의 이상 탐지)

  • Park, SeulGi;Hong, MyungDuk;Jo, GeunSik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.7-9
    • /
    • 2020
  • 기존 CCTV 비디오에서 딥러닝 기반의 이상 탐지 연구는 객체의 행동 값만을 이용하여 이상을 탐지하였기 때문에, 시간 흐름에 따른 정보가 축소되는 문제점이 있었다. 그러나 CCTV 비디오에서의 이상의 원인은 다양한 요소와 시계열 분석에 따른 정보로 이루어져 있어 시간 정보를 유지하면서 다양한 특징 값을 사용한 모델을 설계할 필요가 있다. 따라서 본 논문에서는 C3D에 광학 흐름을 결합한 새로운 앙상블 모델을 제안한다. 실험 결과 본 논문에서 제안하는 모델이 75.83의 AUC를 얻어 기존에 연구되었던 행동 값만을 사용한 모델보다 높은 정확도를 달성하였다. 또한 이상 탐지 모델 설계 시 객체의 행동에 다양한 측면을 고려할 수 있는 여러 특징 값과 시계열 분석에 따른 정보를 사용하는 것이 적절하다는 결론을 도출하였다.

  • PDF

A Concept Language Model combining Word Sense Information and BERT (의미 정보와 BERT를 결합한 개념 언어 모델)

  • Lee, Ju-Sang;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.3-7
    • /
    • 2019
  • 자연어 표상은 자연어가 가진 정보를 컴퓨터에게 전달하기 위해 표현하는 방법이다. 현재 자연어 표상은 학습을 통해 고정된 벡터로 표현하는 것이 아닌 문맥적 정보에 의해 벡터가 변화한다. 그 중 BERT의 경우 Transformer 모델의 encoder를 사용하여 자연어를 표상하는 기술이다. 하지만 BERT의 경우 학습시간이 많이 걸리며, 대용량의 데이터를 필요로 한다. 본 논문에서는 빠른 자연어 표상 학습을 위해 의미 정보와 BERT를 결합한 개념 언어 모델을 제안한다. 의미 정보로 단어의 품사 정보와, 명사의 의미 계층 정보를 추상적으로 표현했다. 실험을 위해 ETRI에서 공개한 한국어 BERT 모델을 비교 대상으로 하며, 개체명 인식을 학습하여 비교했다. 두 모델의 개체명 인식 결과가 비슷하게 나타났다. 의미 정보가 자연어 표상을 하는데 중요한 정보가 될 수 있음을 확인했다.

  • PDF

A Comparative Study on Sentiment Analysis Based on Psychological Model (감정 분석에서의 심리 모델 적용 비교 연구)

  • Kim, Haejun;Do, Junho;Sun, Juoh;Jeong, Seohee;Lee, Hyunah
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.450-452
    • /
    • 2020
  • 기술의 발전과 함께 사용자에게 가까이 자리 잡은 소셜 네트워크 서비스는 이미지, 동영상, 텍스트 등 활용 가능한 데이터의 수를 폭발적으로 증가시켰다. 작성자의 감정을 포함하고 있는 텍스트 데이터는 시장 조사, 주가 예측 등 다양한 분야에서 이용할 수 있으며, 이로 인해 긍부정의 이진 분류가 아닌 다중 감정 분석의 필요성 또한 높아지고 있다. 본 논문에서는 딥러닝 기반 감정 분류에 심리학 이론의 기반 감정 모델을 활용한 결합 모델과 단일 모델을 비교한다. 학습을 위해 AI Hub에서 제공하는 데이터와 노래 가사 데이터를 복합적으로 사용하였으며, 결과에서는 대부분의 경우에 결합 모델이 높은 결과를 보였다.

  • PDF

Automatic Generation of Concatenate Morphemes for Korean LVCSR (대어휘 연속음성 인식을 위한 결합형태소 자동생성)

  • 박영희;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.407-414
    • /
    • 2002
  • In this paper, we present a method that automatically generates concatenate morpheme based language models to improve the performance of Korean large vocabulary continuous speech recognition. The focus was brought into improvement against recognition errors of monosyllable morphemes that occupy 54% of the training text corpus and more frequently mis-recognized. Knowledge-based method using POS patterns has disadvantages such as the difficulty in making rules and producing many low frequency concatenate morphemes. Proposed method automatically selects morpheme-pairs from training text data based on measures such as frequency, mutual information, and unigram log likelihood. Experiment was performed using 7M-morpheme text corpus and 20K-morpheme lexicon. The frequency measure with constraint on the number of morphemes used for concatenation produces the best result of reducing monosyllables from 54% to 30%, bigram perplexity from 117.9 to 97.3. and MER from 21.3% to 17.6%.

Jointly learning class coincidence classification for FAQ classification (FAQ 분류 성능 향상을 위한 클래스 일치 여부 결합 학습 모델)

  • Yang, Dongil;Ham, Jina;Lee, Kangwook;Lee, Jiyeon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.12-17
    • /
    • 2019
  • FAQ(Frequently Asked Questions) 질의 응답 시스템은 자주 묻는 질문과 답변을 정의하고, 사용자 질의에 대해 정의된 답변 중 가장 알맞는 답변을 추론하여 제공하는 시스템이다. 정의된 대표 질문 및 대응하는 답변을 클래스(Class)라고 했을 때, FAQ 질의 응답 시스템은 분류(Classification) 문제라고 할 수 있다. 종래의 FAQ 분류는 동일 클래스 내 동의 문장(Paraphrase)에서 나타나는 공통적인 특징을 통해 분류 문제를 학습하였으나, 이는 비슷한 단어 구성을 가지면서 한 두 개의 단어에 의해 의미가 다른 문장의 차이를 구분하지 못하며, 특히 서로 다른 클래스에 속한 학습 데이터 간에 비슷한 의미를 가지는 문장이 존재할 때 클래스 분류에 오류가 발생하기 쉬운 문제점을 가지고 있다. 본 논문에서는 이 문제점을 해결하고자 서로 다른 클래스 내의 학습 데이터 문장들이 상이한 클래스임을 구분할 수 있도록 클래스 일치 여부(Class coincidence classification) 문제를 결합 학습(Jointly learning)하는 기법을 제안한다. 동일 클래스 내 학습 문장의 무작위 쌍(Pair)을 생성 및 학습하여 해당 쌍이 같은 클래스에 속한다는 것을 학습하게 하면서, 동시에 서로 다른 클래스 간 학습 문장의 무작위 쌍을 생성 및 학습하여 해당 쌍은 상이한 클래스임을 구분해 내는 능력을 함께 학습하도록 유도하였다. 실험을 위해서는 최근 발표되어 자연어 처리 분야에서 가장 좋은 성능을 보이고 있는 BERT 의 텍스트 분류 모델을 이용했으며, 제안한 기법을 적용한 모델과의 성능 비교를 위해 한국어 FAQ 데이터를 기반으로 실험을 진행했다. 실험 결과, 분류 문제만 단독으로 학습한 BERT 기본 모델보다 본 연구에서 제안한 클래스 일치 여부 결합 학습 모델이 유사한 문장들 간의 차이를 구분하며 유의미한 성능 향상을 보인다는 것을 확인할 수 있었다.

  • PDF

Generalized Circulating Current Control Method in Parallel Three-Phase Boost Converters (병렬 삼상 부스트 컨버터에서 일반화된 순환전류 제어 방법)

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.250-257
    • /
    • 2011
  • This paper analyzes characteristic of the three-phase coupled inductor connected to ac source to effectively mitigate the high-frequency circulating current generated in parallel three-phase boost converters. The three-phase coupled inductor analysis presented in this paper uses the three-phase coupled inductor structure and voltage equations. Based on this analysis, the three-phase coupled inductor is added to the conventional low-frequency averaged model. As a result, the novel averaged model which can reduce the low and high-frequency circulating current simultaneously is developed. Using the zero-sequence component of the novel averaged model, each total inductance to the circulating current of the three-phase coupled inductor and line inductor can be obtained. Simulation and experiment results verify the usefulness of three-phase coupled inductor in parallel three-phase boost converters.

Prediction Performance of Hybrid Least Square Support Vector Machine with First Principle Knowledge (First Principle을 결합한 최소제곱 Support Vector Machine의 예측 능력)

  • 김병주;심주용;황창하;김일곤
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.744-751
    • /
    • 2003
  • A hybrid least square Support Vector Machine combined with First Principle(FP) knowledge is proposed. We compare hybrid least square Support Vector Machine(HLS-SVM) with early proposed models such as Hybrid Neural Network(HNN) and HNN with Extended Kalman Filter(HNN-EKF). In the training and validation stage HLS-SVM shows similar performance with HNN-EKF but better than HNN, whereas, in the testing stage, it shows three times better than HNN-EKF, hundred times better than HNN model.