토양수분, 증발산량, 유출량 등의 고해상도 수문기상요소 산출을 위한 지면모델 활용 기술은 기상 및 수문분야에서 널리 활용 중에 있다. 본 연구에서는 미국 국립대기과학연구소(NCAR)에서 개발된 기상-수문 결합모델 WRF-Hydro(Weather Research and Forecasting Model Hydrological modeling extension package)을 활용하여 낙동강 유역에서 발생한 돌발홍수 사례 실험에 적용하여 강우량 및 수문기상요소 전체를 모의함으로써 기상-수문-지면 결합모델을 활용한 수문기상요소 산출하고자 하였다. 이를 기존의 기상모델로부터 입력강제자료를 제공받아 Off-line 형태로 결합된 지면모델(TOPLATS, TOPmodel-based Land Atmosphere Transfer Scheme) 결과와 비교하였고 기상-수문 결합모델의 국내 적용성을 검토하였다. 기상-수문-지면 결합모델(WRF-Hydro)의 초기장 및 경계장은 기상청 현업 모델에서 생성된 국지예보모델자료 1.5km 자료(LDAPS, Local Data Assimilation and Prediction System)를 사용하였으며, 모델의 적분기간은 돌발홍수 사례에 따라 24~36시간을 수행하였다. WRF-Hydro 모델의 물리모수화 방안은 작년까지 기상청에서 현업운영되는 KWRF의 방안들을 준용하였으며, WRF-Hydro 수행을 위해 Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)에서 제공되는 30 m 해상도의 수치표고자료를 GIS(Geographic Information System)를 활용하여 지표유출방향을 설정하였다.
한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
/
pp.293-303
/
2000
데이터 마이닝의 수행 예측 오차를 줄이기 위한 방법으로 하나의 문제를 여러 기법들을 결합하여 해결하고 있다. 본 연구에서는 새로운 결합 모델을 제시하고 이를 통해 예측 오차를 감소시킬 수 있는 가능성을 제시한다. 제시된 결합모델의 성능을 검증하기 위해서 국내 자동차보험 회사의 고객데이터를 바탕으로 고객이탈 예측문제를 다루었다. 결합모델의 예측결과를 의사결정나무, 사례기반추론 그리고 인공신경망 중 하나의 기법만을 사용하여 예측한 결과와 비교 평가하였다. 평가 결과, 결합 모델의 예측 적중률이 개별 기법의 예측 적중률보다 우수했다.
결합부위의 해석을 위하여, 계산 효율과 정확성이 모두 뛰어난 단순모델의 사용이 필요한 경우가 많다. 이 단순모델은 결합부위의 특성을 잘 묘사하는 파라미터들로 구성된다. 이들 파라미터의 값은 실험을 통하여 얻어지게 된다. 따라서 단순모델은 실험에서 사용된 하중하에서는 결합부위의 거동을 잘 묘사하지만, 그외 다른 하중하에서는 결합부위의 거동을 어느 정도 구현할지 알 수 없다. 따라서 단순모델의 정확성을 객관적으로 얻을 수 있는 방법이 필요하게 된다. 본 연구에서는 역최적화 (antioptimization) 개념으로 최악의 하중조건을 정의하여, 이 하중하에서 단순모델의 정확성을 평가하는 방법을 제시하였다. 최악의 하중조건 하에서, 용접으로 체결된 3차원 결합부위의 단순모델과 2차원 구조물에서의 결합부위 단순모델의 정확성을 평가하였다.
본 논문에서는 잡음 환경에서 보다 강인한 성능을 얻기 위하여 음성 모델 기반의 효과적인 특징 보상 기법을 제안한다. 일반적인 모델 기반의 특징 보상 기법은 오열 음성 데이터베이스를 이용한 훈련 과정을 필요로 하므로 온라인 상에서의 적응 과정에 적합하지 않다. 제안한 방법에서는 보정 인자 추정 과정에서 병렬 모델 결합 기법을 도입함으로써 훈련 과정을 필요하지 않게 하였다. 모델의 결합 과정이 HMM 전체가 아닌 가우시안 혼합 (Mixture) 모델에만 적용이 되므로, 계산이 비교적 간단하게 되어 온라인 상에서의 모델 결합을 가능하게 하였다. 병렬적 모델 결합의 도입은 잡음 모델의 독립적인 이용을 가능하게 하였고, 본 논문에서는 MAP (Maximum A Posteriori) 적응을 통해 잡음 모델 갱신을 실시하였다 또한 잡음 오열 과정에 대한 근사화를 통해 연속적 형태의 채널 정규화 기법을 유도하여 적용하였다. 보다 효율적인 구현을 위하여 선택적인 모델 결합 방식을 도입함으로써 연산량을 줄일 수 있는 방법을 제시하였다. 제안한 특징 보상 기법이 부가적인 배경 잡음과 채널 왜곡이 존재하는 잡음 환경에서 음성 인식 시스템의 성능을 향상시키는데 효과적임을 실험을 통해 확인할 수 있었다.
신경회로망을 동적 정보처리에 응용하기 위해서는 비대칭 결합 신경회로망에서 생성되는 동적 상태천이에 관한 직관적 이해가 필요하다. 자기결합을 갖고 결합하중치가 비대칭인 순환결합형 신경회로망은 복수 개의 리미트사이클이 기억 가능하다는 것이 알려져 있다. 현재까지 이산시간 모델의 네트워크에 대한 상태천이 해석은 상세하게 이루어져 왔다. 그러나 연속시간 모델에 대한 해석은 네트워크 규모의 증가에 따른 급격한 계산량의 증가 때문에 연구가 그다지 활발하게 이루어지지 않고 있다. 본 논문에서는 각 뉴런이 최근접 뉴런에만 이진화된 결합하중 +1 및 -1로 연결된 연속시간모델 순환결합형 신경회로망의 동적인 상태천이 특성을 해석하여 이산시간 모델에서 기억 가능한 리미트사이클과의 차이점을 분석한다. 또한 연속시간 네트워크 모델에 카오스 신호를 인가하여 리미트사이클간의 천이를 제어할 수 있는 가능성을 분석하여 동적정보처리에 네트워크를 응용할 수 있는 가능성을 검토한다.
암호화폐시장이 지속해서 성장함에 따라 하나의 새로운 금융시장으로 발전하였다. 이러한 암호화폐시장에 관한 투자전략 연구의 필요성 또한 대두되고 있다. 본 연구에서는 단기매매전략과 딥러닝을 결합한 암호화폐 투자 방법론에 대해 실증분석을 진행하였다. 투자 대상의 암호화폐를 이더리움으로 설정하고, 과거 데이터를 기반으로 최적의 파라미터를 찾아 이를 활용하여 실험 모델의 투자 성과를 분석하였다. 실험 모델은 변동성돌파전략, LSTM(Long Short Term Memory)모델, 이동평균 교차 전략, 그리고 단일 모델들을 결합한 결합 모델이다. 변동성돌파전략은 일 단위로 변동성이 크게 상승할 때 매수하고 당일 종가에 매도하는 단기매매전략이며, LSTM모델은 시계열 데이터에 적합한 딥러닝 모델인 LSTM을 활용하여 얻은 예측 종가를 이용한 매매방법이다. 이동평균 교차 전략은 단기 이동평균선이 교차할 때 매매를 결정하는 방법이다. 결합 모델은 변동성돌파전략의 매수 조건과 변동성돌파전략의 목표 매수가보다 LSTM의 예측 종가가 큰 경우 매수하는 조건이 동시에 만족하면 매수하는 규칙이다. 결합 모델은 변동성돌파전략과 LSTM모델의 파생 변수를 활용해 매수 조건에 AND와 OR를 사용하여 만든 매매 규칙이다. 실험 결과, 단일 모델보다 결합 모델에서 투자 성과가 우수함을 확인하였다. 특히, 데일리 트레이딩과 매수 후 보유의 누적수익률은 -50%이하인 것에 비해 결합 모델은 +11.35%의 높은 누적수익률을 달성하여 하락이 지속되던 투자 기간에도 기술적으로 방어하며 수익을 낼 수 있음을 확인하였다. 본 연구는 기존의 딥러닝기반 암호화폐 가격 예측에서 나아가 변동성이 큰 암호화폐시장에서 딥러닝과 단기매매전략을 결합하여 투자 성과를 개선하였다는 점에서 학술적 의의가 있으며, 실제 투자 시 적용 가능성을 보여주었다는 점에서 실무적 의의가 있다.
자연어처리에서는 많은 모듈들이 파이프라인 방식으로 연결되어 사용되나, 이 경우 앞 단계의 오류가 뒷 단계에 누적되는 문제와 앞 단계에서 뒷 단계의 정보를 사용하지 못한다는 단점이 있다. 본 논문에서는 파이프라인 방식의 문제를 해결하기 위해 사용되는 일반적인 결합 학습 방법을 확장하여, 두 작업이 동시에 태깅된 학습 데이터뿐만 아니라 한 작업만 태깅된 학습데이터도 동시에 학습에 사용할 수 있는 결합 학습 모델을 Latent Structural SVM을 확장하여 제안한다. 실험 결과, 기존의 한국어 띄어쓰기와 품사 태깅 결합 모델의 품사 태깅 성능이 96.99%였으나, 본 논문에서 제안하는 결합 학습 모델을 이용하여 대용량의 한국어 띄어쓰기 학습데이터를 추가로 학습한 결과 품사 태깅 성능이 97.20%까지 향상 되었다.
신경트리(evolutionary neural trees)는 트리 구조의 신경망 모델로서 진화 알고리즘으로 학습하기에 적합한 구조이다. 본 연구에서는 진화 신경트리를 시계열 예측에 적용하였다. 시계열 데이터는 대개 잡음이 포함되어 있으며 동역학적인 특성을 지닌다. 본 논문에서는 견고한 예측 결과를 획득하기 위해 한 개의 신경트리가 아닌 여러개의 신경트리를 결합하여 예측 모델을 구성하는 committee machine을 소개한다. 출력 패턴가에 correlation이 최소가 되도록 상이한 신경트리를 선택하여 결합함으로써 모델 결합 효과를 최대화하는 방법을 사용하였다. 인공적인 잡음을 포함한 시계열 예측 문제와 실세계 데이터에 대한 실험에서 예측에 대한 정확도가 단일 모델을 사용한 경우 보다 향상되었다.
지문을 5가지 클래스로 나누는 헨리시스템을 기반으로 신경망이나 SVM(Support Vector Machines) 등과 같은 다양한 패턴분류 기법들이 지문분류에 많이 사용되고 있다. 특히 최근에는 높은 분류 성능을 보이는 SVM 분류기의 결합을 이용한 연구가 활발히 진행되고 있다. 지문은 클래스 구분이 모호한 영상이 많아서 단일결합모델로는 분류에 한계가 있다. 이를 위해 본 논문에서는 새로운 분류기 결합모델인 다중결정템플릿(Multiple Decision Templates, MuDTs)을 제안한다. 이 방법은 하나의 지문클래스로부터 서로 다른 특성을 갖는 클러스터들을 추출하여 각 클러스터에 적합한 결합모델을 생성한다. NIST-database4 데이터로부터 추출한 핑거코드에 대해 실험한 결과. 5클래스와 4클래스 분류문제에 대하여 각각 $90.4\%$와 $94.9\%$의 분류성능(거부율 $1.8\%$)을 획득하였다.
현재 EJB(Enterprise Java Beans), COM+(Component Object Model+)등의 서로 다른 컴포넌트 참조 모델(Component reference model)을 기반으로 한, 상이한 컴포넌트 시스템 간 통합(Integration)에 대한 새로운 기술들이 제기되고 있다. 동일한 컴포넌트 플랫폼에서 컴포넌트 간 운용은 소스레벨의 결합(Composition)을 통해 이루어진다. 그러나 상이한 컴포넌트 플랫폼의 경우, 유사 도메인 컴포넌트임에도 불구하고 컴포넌트 간 결합은 불가능한 실정이다. 본 논문에서는 상이한 컴포넌트 플랫폼 즉, EJB와 COM+ 컴포넌트 간의 결합 문제를 모델기반의 컴포넌트 변환 기법으로 해결 하였다. EJB, COM+ 컴포넌트 간 결합을 위해 각 참조모델을 비교, 분석하여 구현 독립적(Implementation Independent)인 가상 컴포넌트 모델(Virtual Component Model)과 상호 변환을 위한 구현 테이블(Implementation Table)을 제시하였다. 가상 컴포넌트 모델과 구현 테이블을 참조, 각 구현 모델을 가상 컴포넌트 모델로 일반화하거나 가상 컴포넌트 모델링을 통하여 플랫폼의 구현 독립적인 가상 컴포넌트 모델을 작성하고, 선택적으로 EJB와 COM+로 변환 가능하게 한다. 상이한 컴포넌트 플랫폼으로의 효율적인 모델변환 방법을 제시함으로서 EJB와 COM+ 컴포넌트간의 결합이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.