Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.488-491
/
2008
관점지향 프로그래밍은 횡단관심사를 애스펙트로 모듈화 하여 시스템의 개발 용이성, 재사용성 그리고 확장성을 향상시킨다. 이에 관점지향 프로그래밍 적용을 위한 다양한 연구가 진행되고 있으나 애스펙트를 효율적으로 개발하는 기법 관련 연구가 보다 필요한 상황이다. 본 논문에서는 애스펙트의 교차점을 구성하는 핵심요소인 결합식 추출을 위한 기법을 제안한다. 제안한 기법은 결합정보 매트릭스 작성, 결합식 작성, 그리고 결합식 정제 및 확인으로 구성한 워크플로우를 수행하여 결합정보 매트릭스와 패키지 트리를 작성하고, 결합점명 패턴의 공통성을 분석하여 애스펙트 교차점의 결합식을 추출한다. 추출한 결합식은 결합점의 패키지명, 클래스명, 그리고 메소드명 패턴의 공통성을 반영하며, 기법의 산출물은 애스펙트 결합에 대한 정확한 정보를 제공한다.
본 논문에서는 부쉬 트리를 할당 트리로 변환한 후 결합 연산을 수행하면서 실제 실행시간을 동적으로 계산하고 그 결과에 의해 실시간에 프로세서를 할당하는 동적 프로세서 할당 기법을 이용한 파이프라인 해쉬 결합 알고리즘을 제안하였다. 프로세서를 할당하는 과정에서 초기 릴레이션의 기본 정보만을 이용하여 미리 프로세서를 할당하는 기존의 정적 프로세서 할당 기법은 정확한 실행시간을 예측할 수 없었다. 따라서 본 논문에서는 할당 트리 각 노드의 실행결과를 포함한 결합 과정 중의 정보를 다음 노드의 실행시간에 충분히 반영하는 동적 프로세서 할당 기법을 제안하였으며, 이로써 프로세서를 효율적으로 분배하고 전체적인 실행시간을 최소화하였다. 또한 전체적인 질의 실행시간을 줄이기 위하여 결합 가능성이 없는 튜플들을 제거한 후 결합 연산을 수행할 수 있도록 해쉬 필터 기법을 이용하였다. 결합 연산을 수행하기에 앞서 모든 결합 속성 값에 대해 해쉬 필터를 생성하는 정적 필터 기법은 모든 결합 연산의 중간 결과로 발생할 수 있으나 최종 결과 릴레이션의 튜플이 될 수 없는 튜플들까지도 모두 추출이 가능하다. 따라서 각각의 결합 연산 직전에 해쉬 필터를 생성하는 동적 필터 기법에 비해 결합 가능성이 없는 튜플을 최대한 제거할 수 있으며 이로써 결합 연산의 실행비용을 크게 줄일 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.429-430
/
2019
본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.
각종 인공지능 기법들을 활용하여, 주식시장의 흐름을 예측하려는 연구가 지금까지 많은 인공지능 및 금융공학의 연구자들에 의해 시도되어 왔으며, 그 결과 다양한 인공지능 기법들이 예측 방법론으로 제시되어 왔다. 이런 가운데 서로 다른 예측모형들이 산출하는 예측결과를 종합 - 보완하는 결합기법에 관련된 연구가 90년대 후반부터 오늘날까지 꾸준하게 발표되고 있다. 본 연구 역시 유전자 알고리즘 기반의 새로 인공지능 예측모형간 결합기법을 제시하고 있다. 다만, 기존의 연구모형들이 각 개별모형 결과의 상대적 가중치에 초점을 맞추고 있었다면, 본 연구의 제안모형은 등락을 판단하는데 활용되는 임계치까지 유전자 알고리즘을 이용해 동시에 최적화하도록 설계되어 있다는 점에서 차별화된다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 지난 1998년부터 2007년까지의 KOSPI 지수 등락 예측을 위해 구축된 로지스틱 회귀모형, 인공신경망, SVM모형의 결과들을 제안모형을 이용해 결합하였다. 그 결과, 예측력 향상에 본 연구의 제안모형이 기여 할 수 있음을 확인 할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.481-483
/
2002
본 논문에서는 데이터 결합 영역에서 문서값을 정규화 하는 기법과 결합함수에 따라 용어가중치 결합이 검색성능에 어떤 영향을 미치는가를 분석하였으며, 특히 용어가중치 결합이 실질적으로 효율적인가를 성능 향상률 측면과 검색시스템의 효율성 측면에서 검증하고, 성능이 향상된 용어가중치 결합의 특징을 분석하였다. 실헙결과 대부분의 장어가중치 결합은 문서값 정규화 기법과 실험집단에 관계없이 높은 성능 향상률을 보이지 않았다. 특히 단일가중치고 높은 검색성능을 보였던 상위 가중치 알고리즘들은 다른 가중치 알고리즘과 결합할 경우 두드러진 성능 향상률을 보이지 않았다. 검색시스템의 효율성 측면에서 용어가중치 결합을 평가한 결과 문헌 내 단어빈도를 최대단어 빈도로 정규화한 가중치 알고리즘이 코사인 정규화 기법을 적용한 가중치 알고리즘들과 결합될 때 5개 실험집안에서 최적 단일가중치 보다 2% 이상 높은 성능을 보였다. 이는 서로 다른 특성을 지니는 용어가중치 알고리즘들이 장단점을 보완하여 검색성능을 향상시킨 수 있다는 것을 의미한다. 그러나 용어가중치 결합의 효율성은 컬렉션과 가중치 알고리즘의 특성에 의존적이었으며, 비록 각 용어가중치 결합의 성능이 높게 나타날지라도 최적의 성능을 보인 달일가중치와 비교하면 그 성능 차이가 미미하거나 낮아서 대부분의 용어가중치 결합이 실질적으로 효과적이지 못하였다.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.47
no.11
/
pp.19-23
/
2010
In this paper, we propose a combining scheme for partial IR based hybrid ARQ in MIMO systems. The proposed combining scheme is a symbol-level combining scheme for repeatedly transmitted systematic symbols in partial IR based hybrid ARQ. In this paper, it is shown that the proposed combining scheme can also enhance the detection performance of the parity symbols that are newly transmitted in each retransmission. Simulation results show that the proposed combining scheme significantly improves the performance of the partial IR based hybrid ARQ compared to the cases of the conventional bit-level combining scheme, especially with the ZF detection.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
1994.10a
/
pp.238-243
/
1994
본 논문에서는 여러가지 형태의 결합부에 적용할 수 있는 일반적인 모델링 기법에 대하여 기술하였다. 기존의 해석방법은 특정한 결합부에만 적용이 가능하고 유한요소해석과 실험이 상호 보완적인 관계를 가진 형태의 해석방법이므로 실험이 불가능한 경우에 대해서는 적용하기 어려운 경우도 있다. 본 논문에서는 별도의 실험을 수행하지 않고 결합부 영역만을 상세하게 유한요소 모델링을 하여서 선택된 자유도에 대한 유연성 행렬(Flexibility Matrix)을 구하여 결합부의 특성을 구하는 일반적 모델링 기법을 제시하였다. 이 방법은 수치적으로 축약할 수 없는 모델-결합부가 접촉면(Contact Surface)을 가지고 있는 구조물을 효과적으로 축약할 수 있는 장점이 있다. 또한 모델링되는 결합부의 경계조건의 영향을 배제할 수 있으며 결합부에 존재하는 비선형성도 적정범위내에서 선형화할 수 있다. 제시한 일반적 모델링 기법을 나사 결합부, 접착제 결합부(Glued Joints), 볼트 결합부에 적용하여 결합부이 특성을 구하였으며 실험을 통하여 제시한 해석방법의 타당성을 검증하였다.
This paper proposes the H∞ norm based data association gate method to apply robustly the data association gate of passive sonar automatic target tracking which is on non-linear targets in dense cluttered environment. For target tracking, data association method selects the measurements within validated gate, which means validated measuring extent, as candidates for the data association. If the extent of the validated gate in the data association is not proper or the data association executes under dense cluttered environment, it is difficult to maintain the robustness of target tracking due to interference of clutter measurements. To resolve this problem, this paper proposes a novel gating method which applies H∞ norm based bisection algorithm combined with 3-σ gate method under Gaussian distribution assumption and tracking error covariance. The proposed method leads to alleviate the interference of clutters and to track the non-linear maneuvering target robustly. Through analytic method and simulation to utilize simulated data of horizontal and vertical bearing measurements, improvement of data association robustness is confirmed contrary to the conventional method.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.161-163
/
2022
본 논문에서는 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 효율적인 결합을 통해 기존의 패치매치 기반의 방법들이 낮은 깊이값 추정 정확도를 보인 영역들인 텍스처가 부족한 영역과 기존의 분할 기반 방법들이 깊이값 추정에 한계를 보인 세밀한 영역에서의 깊이값 추정 정확도를 동시에 높이고 고품질의 조밀 깊이지도를 얻는 것을 목표로 한다. 이를 위해 제안한 방법에서는 신뢰지도를 바탕으로 패치매치 기법의 조밀 깊이지도, 조밀 노말지도와 분할 기법의 조밀 깊이지도, 조밀 노말지도의 초기 결합 깊이지도 및 초기 결합 노말지도를 생성한다. 이후 각 픽셀에서 원래 픽셀과 주변 픽셀에서의 깊이값, 노말값들로 업데이트를 위한 후보들을 만든다. 이후 각각의 후보들에 대해서 깊이값, 노말값, 컬러값들을 바탕으로 비용을 계산한다. 이후 가장 최적의 비용을 가지는 후보값으로 각 픽셀의 깊이값과 노말값을 업데이트한다. 이를 통해 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 장점을 합친 결합 조밀 깊이지도를 생성한다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.04a
/
pp.293-303
/
2000
데이터 마이닝의 수행 예측 오차를 줄이기 위한 방법으로 하나의 문제를 여러 기법들을 결합하여 해결하고 있다. 본 연구에서는 새로운 결합 모델을 제시하고 이를 통해 예측 오차를 감소시킬 수 있는 가능성을 제시한다. 제시된 결합모델의 성능을 검증하기 위해서 국내 자동차보험 회사의 고객데이터를 바탕으로 고객이탈 예측문제를 다루었다. 결합모델의 예측결과를 의사결정나무, 사례기반추론 그리고 인공신경망 중 하나의 기법만을 사용하여 예측한 결과와 비교 평가하였다. 평가 결과, 결합 모델의 예측 적중률이 개별 기법의 예측 적중률보다 우수했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.