• Title/Summary/Keyword: 결함 관리 기법

Search Result 2,856, Processing Time 0.031 seconds

Evaluation of environmental drought index applicability for watershed-specific drought management (유역 맞춤형 가뭄 관리를 위한 환경가뭄지수 적용성 평가)

  • Lim, Jaeyeon;Lee, Sangung;Jo, Bugeon;Kim, Young Do;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.699-709
    • /
    • 2024
  • This study comprehensively evaluates the environmental impacts of droughts caused by abnormal climate change. Specifically, to quantitatively analyze the impact of droughts on the water environment of river basins, an Environmental Drought Index (EDI) was developed using meteorological, hydrological, and water quality parameters. The study focuses on the Han River basin, categorizing the watersheds into urban, agricultural, and forest types to develop region-specific EDIs. Various data analysis techniques, such as multiple linear regression, principal component and random forest analysis, were employed to determine the weights of different parameters to assess the impact of droughts. The primary water quality parameter used in the assessment was BOD (Biochemical Oxygen Demand). The results showed that in urban areas, TOC (Total Organic Carbon) and flow were the primary parameters, with significant deterioration in water quality during droughts. In agricultural areas, TOC and EC (Electrical Conductivity) were the primary parameters driving changes in water quality during droughts. In forest areas, TOC, flow and cumulative precipitation were identified as the primary parameters, with relatively less impact compared to other regions.

Assessment of Risk Levels in Cut-Slope Using Dimensionality Reduction and Clustering Analysis (차원축소와 클러스터링 분석을 활용한 도로비탈면 위험등급 산정)

  • Seo, Seunghwan;Kim, Gunwoong;Woo, Younghoon;Park, Byungsuk;Kim, Juhyong;Kim, Seung-Hyun;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.5
    • /
    • pp.113-129
    • /
    • 2024
  • This study reclassifies the risk levels of cut-slopes and addresses the limitations inherent in existing evaluation methods using road slope maintenance data. Conventional risk assessment predominantly relies on subjective expert judgment, resulting in issues of consistency and reliability. To mitigate these limitations, this study applies dimensionality reduction techniques, specifically Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), followed by K-means clustering, to classify new risk levels. The clustering results using PCA demonstrated more distinct cluster separation compared to LDA, and also showed superior performance in terms of the silhouette coefficient and other clustering metrics. This suggests that the existing risk level labels may not adequately capture the underlying data structure. Furthermore, the inconsistency observed between LDA-based clustering results and current risk labels indicates potential reliability issues in the present labeling approach. To resolve this, new risk levels were assigned using PCA and K-means clustering, with cluster risk levels evaluated based on risk scores. A quantitative analysis of key risk factors was also conducted to establish criteria for risk classification and assess the impact of each variable on the different risk levels. This study proposes a data-driven, objective, and quantitative approach to risk level evaluation, aiming to improve the efficiency and reliability of road slope management.

The Causes of Conflict and the Effect of Control Mechanisms on Conflict Resolution between Manufacturer and Supplier (제조-공급자간 갈등 원인과 거래조정 방식의 갈등관리 효과)

  • Rhee, Jin Hwa
    • Journal of Distribution Research
    • /
    • v.17 no.4
    • /
    • pp.55-80
    • /
    • 2012
  • I. Introduction Developing the relationships between companies is very important issue to ensure a competitive advantage in today's business environment (Bleeke & Ernst 1991; Mohr & Spekman 1994; Powell 1990). Partnerships between companies are based on having same goals, pursuing mutual understanding, and having a professional level of interdependence. By having such a partnerships and cooperative efforts between companies, they will achieve efficiency and effectiveness of their business (Mohr and Spekman, 1994). However, it is difficult to expect these ideal results only in the B2B corporate transaction. According to agency theory which is the well-accepted theory in various fields of business strategy, organization, and marketing, the two independent companies have fundamentally different corporate purposes. Also there is a higher chance of developing opportunism and conflict due to natures of human(organization), such as self-interest, bounded rationality, risk aversion, and environment factor as imbalance of information (Eisenhardt 1989). That is, especially partnerships between principal(or buyer) and agent(or supplier) of companies within supply chain, the business contract itself will not provide competitive advantage. But managing partnership between companies is the key to success. Therefore, managing partnership between manufacturer and supplier, and finding causes of conflict are essential to improve B2B performance. In conclusion, based on prior researches and Agency theory, this study will clarify how business hazards cause conflicts on supply chain and then identify how developed conflicts have been managed by two control mechanisms. II. Research model III. Method In order to validate our research model, this study gathered questionnaires from small and medium sized enterprises(SMEs). In Korea, SMEs mean the firms whose employee is under 300 and capital is under 8 billion won(about 7.2 million dollar). We asked the manufacturer's perception about the relationship with the biggest supplier, and our key informants are denied to a person responsible for buying(ex)CEO, executives, managers of purchasing department, and so on). In detail, we contact by telephone to our initial sample(about 1,200 firms) and introduce our research motivation and send our questionnaires by e-mail, mail, and direct survey. Finally we received 361 data and eliminate 32 inappropriate questionnaires. We use 329 manufactures' data on analysis. The purpose of this study is to identify the anticipant role of business hazard (environmental dynamism, asset specificity) and investigate the moderating effect of control mechanism(formal control, social control) on conflict-performance relationship. To find out moderating effect of control methods, we need to compare the regression weight between low versus. high group(about level of exercised control methods). Therefore we choose the structural equation modeling method that is proper to do multi-group analysis. The data analysis is performed by AMOS 17.0 software, and model fits are good statically (CMIN/DF=1.982, p<.000, CFI=.936, IFI=.937, RMSEA=.056). IV. Result V. Discussion Results show that the higher environmental dynamism and asset specificity(on particular supplier) buyer(manufacturer) has, the more B2B conflict exists. And this conflict affect relationship quality and financial outcomes negatively. In addition, social control and formal control could weaken the negative effect of conflict on relationship quality significantly. However, unlikely to assure conflict resolution effect of control mechanisms on relationship quality, financial outcomes are changed by neither social control nor formal control. We could explain this results with the characteristics of our sample, SMEs(Small and Medium sized Enterprises). Financial outcomes of these SMEs(manufacturer or principal) are affected by their customer(usually major company) more easily than their supplier(or agent). And, in recent few years, most of companies have suffered from financial problems because of global economic recession. It means that it is hard to evaluate the contribution of supplier(agent). Therefore we also support the suggestion of Gladstein(1984), Poppo & Zenger(2002) that relational performance variable can capture the focal outcomes of relationship(exchange) better than financial performance variable. This study has some implications that it tests the sources of conflict and investigates the effect of resolution methods of B2B conflict empirically. And, especially, it finds out the significant moderating effect of formal control which past B2B management studies have ignored in Korea.

  • PDF

Establishment of PCR Conditions for the Identification of Stenotrophomonas maltophilia Isolated from Boar Semen and Antimicrobial Susceptibility Patterns of the Isolates (돼지 정액에서 분리된 Stenotrophomonas maltophilia 확인을 위한 PCR 기법 개발 및 분리 균주의 항생제 감수성 양상)

  • Jung, Byeong-Yeal;Park, Bum-Soo;Kim, Ha-Young;Byun, Jae-Won;Kim, Ae-Ran;Jeon, Albert Byung-Yun;Kim, In-Cheul;Chung, Ki-Hwa
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1114-1119
    • /
    • 2012
  • Bacteria are frequently contaminated during the collection and processing procedures of boar semen. Of the contaminants, Stenotrophomonas (S.) maltophilia is a Gram-negative bacterium that is widely distributed in a variety of habitats. Although PCR assays have been developed for the detection of S. maltophilia, they cross-react with some species of Xanthomonas. In this study, we designed a primer set for the detection of S. maltophilia in order to target the chiA (GenBank accession no. NC_010943) gene. The specific PCR products were amplified from S. maltophilia only, not from other tested strains that are frequently found in semen. The detection limit of the PCR was $1.5{\times}10^3$ CFU/ml with pure-cultured S. maltophilia and $1.5{\times}10^4$ CFU/ml with S. maltophilia spiked in semen. Twenty-six (5.9%) S. maltophilia were isolated from 440 semen samples. The PCR results exhibited 98.9% agreement with a comparison of S. maltophilia isolation. Also, the sensitivity and specificity of the PCR were 100% and 98.7%, respectively. In the antimicrobial susceptibility test, S. maltophilia isolates were highly susceptible to enrofloxacin and florfenicol, while the majority of them were resistant to amoxicillin/clavulanic acid, apramycin, ceftiofur, penicillin, and spectinomycin. These results indicated that the PCR using the chiA gene was proven to be reliable and effective for the detection of S. maltophilia with high levels of sensitivity and specificity.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning (머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발)

  • Yeong-Woo Lim;Ji-Yeon Eom;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.307-325
    • /
    • 2023
  • Due to the prolonged COVID-19 pandemic, the frequency of people who are tired of living indoors visiting nearby mountains and national parks to relieve depression and lethargy has exploded. There is a place where thousands of people who came out of nature stop walking and breathe and rest, that is the mineral spring. Even in mountains or national parks, there are about 600 mineral springs that can be found occasionally in neighboring parks or trails in the metropolitan area. However, due to irregular and manual water quality tests, people drink mineral water without knowing the test results in real time. Therefore, in this study, we intend to develop a model that can predict the quality of the spring water in real time by exploring the factors affecting the quality of the spring water and collecting data scattered in various places. After limiting the regions to Seoul and Gyeonggi-do due to the limitations of data collection, we obtained data on water quality tests from 2015 to 2020 for about 300 mineral springs in 18 cities where data management is well performed. A total of 10 factors were finally selected after two rounds of review among various factors that are considered to affect the suitability of the mineral spring water quality. Using AutoML, an automated machine learning technology that has recently been attracting attention, we derived the top 5 models based on prediction performance among about 20 machine learning methods. Among them, the catboost model has the highest performance with a prediction classification accuracy of 75.26%. In addition, as a result of examining the absolute influence of the variables used in the analysis through the SHAP method on the prediction, the most important factor was whether or not a water quality test was judged nonconforming in the previous water quality test. It was confirmed that the temperature on the day of the inspection and the altitude of the mineral spring had an influence on whether the water quality was unsuitable.

The Relationship among Returns, Volatilities, Trading Volume and Open Interests of KOSPI 200 Futures Markets (코스피 200 선물시장의 수익률, 변동성, 거래량 및 미결제약정간의 관련성)

  • Moon, Gyu-Hyen;Hong, Chung-Hyo
    • The Korean Journal of Financial Management
    • /
    • v.24 no.4
    • /
    • pp.107-134
    • /
    • 2007
  • This paper tests the relationship among returns, volatilities, contracts and open interests of KOSPI 200 futures markets with the various dynamic models such as granger-causality, impulse response, variance decomposition and ARMA(1, 1)-GJR-GARCH(1, 1)-M. The sample period is from July 7, 1998 to December 29, 2005. The main empirical results are as follows; First, both contract change and open interest change of KOSPI 200 futures market tend to lead the returns of that according to the results of granger-causality, impulse response and variance decomposition with VAR. These results are likely to support the KOSPI 200 futures market seems to be inefficient with rejecting the hypothesis 1. Second, we also find that the returns and volatilities of the KOSPI 200 futures market are effected by both contract change and open interest change of that due to the results of ARMA(1,1)-GJR-GARCH(1,1)-M. These results also reject the hypothesis 1 and 2 suggesting the evidences of inefficiency of the KOSPI 200 futures market. Third, the study shows the asymmetric information effects among the variables. In addition, we can find the feedback relationship between the contract change and open interest change of KOSPI 200 futures market.

  • PDF

Aesthetic Landscape Assessment Based on Landscape Units in the Han River Riparian Area (경관단위 기반 수변환경의 심미적 평가 - 한강 수변을 대상으로 -)

  • Bae, Min-Ki;Park, Chang-Sug;Oh, Chung-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.43-56
    • /
    • 2012
  • The purpose of this study was to propose management strategies through aesthetic landscape assessments for landscape units in the Han River riparian(HRR) area. First, this research reclassified the HRR into "natural," "artificial," "agricultural," and mixed landscape types and selected 37 representative case areas(about $1km{\times}1km$). This study found 71 landscape units in consideration of topography and land surface classification. Landscape assessment consisted of landscape quality and landscape integration assessment. The criteria for assessing landscape quality were "naturalness," "interest," "uniqueness," and "landscape function." "Landscape quality" was ranked into five grades using a matrix. The landscape integration assessment consisted of an inner integration assessment in each landscape unit and outer integration assessment among landscape units. As a result of the field study, case sites were found to have 4,288 landscape units and an area of $42.8km^2$. The forest area was found to have the most space with $11,580,905m^2$(27.1%), while the wet lands had just $52,348m^2$(0.1%). In the landscape quality assessment, about 30.5% of the total area consisted of landscape units that scored highest in "naturalness". In the landscape integration assessment, about 39.3% of the total area consisted of landscape units which scored highest in "integration", denoting visual interrelation and harmony. The existence of disparities in landscape quality in accordance with the form of the landscaping was determined using a Oneway ANOVA, with "naturalistic" landscaping scoring the highest and "artificial" landscaping scoring lowest. This study may contribute to making the HRR area a more ecologically sound and visually attractive landscape space. It is recommended that the aesthetical and ecological value of the landscape unit should be assessed simultaneously in the future.

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.191-203
    • /
    • 2022
  • In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.