• Title/Summary/Keyword: 결함탐상

Search Result 227, Processing Time 0.026 seconds

Classification of Axis-symmetric Flaws with Non-Symmetric Cross-Sections using Simulated Eddy Current Testing Signals (모사 와전류 탐상신호를 이용한 비대칭 단면을 갖는 축대칭 결함의 형상분류)

  • Song, S.J.;Kim, C.H.;Shin, Y.K.;Lee, H.B.;Park, Y.W.;Yim, C.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.510-517
    • /
    • 2001
  • This paper describes an initial study for the application of eddy current pattern recognition approaches to more realistic flaw characterization in steam generator tubes. For this purpose, finite-element model-based theoretical eddy current testing (ECT) signals are simulated from 5 types of OD flaws with the variation in flaw size parameters and testing frequency. In addition, three kinds of software are developed for the convenience in the application of steps in pattern recognition approaches such as feature extraction feature selection and classification by probabilistic neural networks (PNNs). The cross point of the ECT signals simulated from flaws with non-symmetric cross-sections shows the deviation from the origin of the impedance plane. New features taking advantages of this phenomenon are added to complete the feature set with a total of 18 features. Then, classification with PNNs are performed based on this feature set. The PNN classifiers show high performance for the identification of symmetry in the cross-section of a flaw. However, they show very limited success in the interrogation of the sharpness of flaw tips.

  • PDF

A Study on the Design of RFECT System for Ferromagnetic Pipelines (강자성체 배관 탐상용 RFECT System의 설계에 관한 연구)

  • Lee, Yu Ki;Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.171-178
    • /
    • 2014
  • Remote Field Eddy Current Testing (RFECT), one of the ways which is a nondestructive testing using electromagnetic fields, can make up for Magnetic Flux Leakage (MFL) weaknesses and general Eddy Current Testing (ECT) weaknesses which is an occurrence of a huge friction force or disadvantage of detecting defects on the outer wall. So many of institutes and laboratories have studied on RFECT for the past 50 years. But There is a lack of discussion about a study on eddy current and magnetic field distributions in a pipe wall and designing of RFECT exciter coil. In this paper, eddy current and magnetic field distributions in a pipe wall and influence of altering variables are analyzed. Also, the optimal design algorithm about the RFECT Exciter coil are proposed, and influence on defect signals caused by alteration of its shape is analyzed.

The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures (원전 구조물 결함 탐지를 위한 음향방출 신호 처리 방안에 대한 기초 연구)

  • Kim, Jong-Hyun;Korea Aerospace University, Jae-Seong;Lee, Jung;Kwag, No-Gwon;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.485-492
    • /
    • 2009
  • The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection.

Numerical Design of Shielded Encircling Probe for RFEC Testing of Nuclear Fuel Cladding Tube (핵연료 피복재 튜브의 원격장와전류 탐상을 위한 차폐된 관통형 탐촉자의 수치해석적 설계)

  • Shin, Young-Kil;Shin, Sang-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.650-657
    • /
    • 2001
  • This paper explains the process of designing a shielded encircling remote field eddy current (RFEC) probe to inspect nuclear fuel cladding tubes and investigates resulting signal characteristics. To force electromagnetic energy from exciter coil to penetrate into the tube, exciter coil is shielded outside by laminations of iron insulated electrically from each other. Effects of shielding and the proper operating frequency are studied by the finite element analysis and the location for sensor coil is decided. However, numerically simulated signals using the designed probe do not clearly show the defect indication when the sensor passes a defect and the other indication appeared as the exciter passes the defect is affected by the shape of shielding structure, which demonstrates that the sensor is directly affected by exciter fields. For this reason, the sensor is also shielded outside and this shielding dramatically improves signal characteristics. Numerical modeling with the finally designed probe shows very similar signal characteristics to those of inner diameter RFEC probe. That is, phase signals show almost equal sensitivity to inner diameter and outer diameter defects and the linear relationship between phase signal strength and defect depth is observed.

  • PDF

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.

Ultrasonic Testing Simulation in Austenitie Stainless Steel Weld by Ray Tracing Technique (선추적기법을 활용한 오스테나이트계 스텐레스강 용접부 초음파탐상 모의)

  • Lee, S.L.;Lim, H.T.;Park, C.S.;Kim, B.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.1
    • /
    • pp.310-317
    • /
    • 1995
  • Crack detection technique by ultrasonics in structures and components made of austenitic stainless steel often loses its reliability due to the material characteristics during inservice inspection of nuclear power plants, especially in the area of detection and sizing in centrifugally cast stainless steel pipings. In order to understand and overcome this problem, computer program for tracing the ultrasonic rays within material has been developed to simulate the process of defect detection within weld. The program simulates through transmission and reflection technique in crack detection of austenitic stainless steel as well as ultrasonic beam propagation through multiple media including stainless steel cladding interface.

  • PDF

Comparison of TOFD and Radiographic Testing for a Mock-up Specimen (모의 시험편에 대한 TOFD와 방사선투과시험의 비교)

  • Kim, Chung-Jick;Jeon, Jong-Gun;Kim, Jin-Taek
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • In order to detect the internal defects which occur in welding parts of pressure vessel and structures, radiographic testing and ultrasonic testing is applied. However, because of the risks of radiation exposure and film processing, radiographic testing takes a relatively long time to verify the test results and it has affected in the production process. Typically, the manual ultrasonic testing is not easy to reproduce the result and it is highly dependent on the tester's skills. The TOFD technique, one of the automatic ultrasonic testings is spreading alternatively. This research describes the comparing test results by applying radiographic testing and TOFD technique to a mock-up specimen incruding the flaws. The TOFD technique will contribute to improve the objective reliability of the ultrasonic technique.

Effects of the Multi-Defects on Detecting Signals in Magnetic Flux Leakage System (자기누설탐상시스템에서 밀집된 다수의 결함이 탐상 신호에 미치는 영향)

  • Seo, Kang;Jeong, Hyun-Won;Park, Gwan-Soo;Lee, Min-Ho;Choi, Doo-Hyun;Lee, Seung-Hyun;Um, Chang-Gun;Shin, Pan-Seok;Kim, Chul;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.70-73
    • /
    • 2005
  • 자기누설탐상시스템은 지하에 매설된 가스관에서 발생되는 부식이나 크랙 또는 기계적 변형을 탐지하기 위한 방법으로 비파괴검사 방법의 하나이다. 가스관은 Nd자석에 의해 착자가 되고, 가스관에 부식이 발생했을 경우 가스관의 단면적이 작아지게 되어 자기누설이 발생하며, 발생된 자기누설을 홀센서로 검출하여 부식의 유무, 크기, 모양 등을 판별하게 된다. 가스관에는 한 개의 독립적인 부식도 있지만, 다수의 부식이 밀집되어 나타나기도 한다. 다수의 부식이 밀집되었을 경우 부식간의 거리에 따라 하나의 부식으로 판정되기도 하며, 그에 따라 부식의 깊이를 판정하는데 있어 정확성이 저감된다. 따라서 본 논문에서는 다수의 부식이 밀집되어 발생할 경우 자기적 영향을 분석하고, 깊이 판정에 있어 정확성을 높이기 위한 연구를 수행하였다. 이를 위해서 실제 결함을 제작하여 실험하고, 해석하여 비교하였으며 밀집된 다수의 부식에 의한 자기적 영향에 대하여 고찰하였다.

  • PDF