Journal of the Korean Society for Nondestructive Testing
/
v.15
no.2
/
pp.395-406
/
1995
Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic pattern recognition technique. Here brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on probabilistic neural networks as efficient classifiers for many practical classification problems. In an example probabilistic neural networks are applied to classify flaws in weldments into 3 classes such as cracks, porosity and slag inclusions. Probabilistic nets are shown to be able to exhibit high performance of other classifiers without any training time overhead. In addition, forward selection scheme for sensitive features is addressed to enhance network performance.
Journal of the Korea Academia-Industrial cooperation Society
/
v.9
no.3
/
pp.605-610
/
2008
Through welding fabrication, user can feel unsatisfaction of surface quality because of welded defects, Generally speaking, these are called weld defects. For checking these defects effectively without time loss effectively, weldability estimation system setup is an urgent thing for detecting whole specimen quality. In this study, by laser vision camera, catching a rawdata on welded specimen profiles, treating vision processing with these data, qualitative defects are estimated from getting these information at first. At the same time, for detecting quantitative defects, whole specimen weldability estimation is pursued by multifeature pattern recognition, which is a kind of fuzzy pattern recognition. For user friendly, by weldability estimation results are shown each profiles, final reports and visual graphics method, user can easily determined weldability. By applying these system to welding fabrication, these technologies are contribution to on-line weldability estimation.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2001.10a
/
pp.600-602
/
2001
본 논문은 웨이블릿 필터를 이용하여 홍채영상의 에지를 검출하고 패턴매칭 기법을 적용하여 홍채의 결함조직에 대한 위치를 추정하는 연구이다. 필터는 웨이블릿 변환을 이용한 2차원 주파수 영역의 고역통과 필터를 사용하여 홍채영상의 에지를 검출하고, 이를 표준진단패턴과 오버랩 매칭으로 결함조직을 검출한다. 실험결과 처리속도가 기존의 에지검출기법에 비해 처리속도향상과 에지검출영상의 PSNR 증가에 따라 오버랩 패턴매칭기법에 의한 인식률에서 92%로 홍채결함조직을 자동 진단시스템에 응용 가능하다.
Transactions of the Korean Society of Mechanical Engineers A
/
v.38
no.2
/
pp.205-210
/
2014
Recently, pattern recognition methods have been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov models (HMMs) and artificial neural networks (ANNs) have recently been used as pattern recognition methods in various fields. In this study, a HMM-ANN hybrid method for the fault diagnosis of a mechanical system is introduced, and a rotating wind turbine blade with a crack is selected for fault diagnosis. The existence, location, and depth of said crack are identified in this research. For improving the diagnostic accuracy of the method in spite of the presence of noise, a moment with a few specific frequencies is applied to the structure.
Identifying defects in textiles is a key procedure for quality control. This study attempted to create a model that detects defects by analyzing the images of the fabrics. The models used in the study were deep learning-based VGGNet and ResNet, and the defect detection performance of the two models was compared and evaluated. The accuracy of the VGGNet and the ResNet model was 0.859 and 0.893, respectively, which showed the higher accuracy of the ResNet. In addition, the region of attention of the model was derived by using the Grad-CAM algorithm, an eXplainable Artificial Intelligence (XAI) technique, to find out the location of the region that the deep learning model recognized as a defect in the fabric image. As a result, it was confirmed that the region recognized by the deep learning model as a defect in the fabric was actually defective even with the naked eyes. The results of this study are expected to reduce the time and cost incurred in the fabric production process by utilizing deep learning-based artificial intelligence in the defect detection of the textile industry.
In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.
In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
2003.10a
/
pp.271-276
/
2003
In this study, we compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to two algorithm. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we comfirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.21
no.1
/
pp.19-27
/
2007
In this paper, we develope and implement a TFT-LCD cell defects detection algorithm using morphology. To detect the bright line or dark line defects and the bright pixel or dark pixel defects of the TFT-LCD cells, we determine the shape of the morphology operators considering the shape characteristics of the TFT-LCD sub pixels. Using dilation, erosion, and the subtraction operators, we extract gray level defects information. Then, we apply the optimal threshold method which shows the best results in terms of several criteria. Finally, we determine the defects using labelling method. From various experiments using TFT-LCD panels, the proposed algorithm shows superior results.
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.9
no.1
/
pp.119-127
/
2000
In this study the classified researches the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing feature extraction feature selection and classifi-er selection is teated by bulk,. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function the empirical Bayesian classifier. Also the pattern recognition technology is applied to classifica-tion problem of natural flaw(i.e multiple classification problem-crack lack of penetration lack of fusion porosity and slag inclusion the planar and volumetric flaw classification problem), According to this result it is possible to acquire the recognition rate of 83% above even through it is different a little according to domain extracting the feature and the classifier.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.