• Title/Summary/Keyword: 결정여과공정

Search Result 49, Processing Time 0.036 seconds

A Study on Fouling Characteristics and Applicability of Fouling Reducer in Submerged MBR Process (침지형 MBR공정에서 파울링 특성과 파울링 완화제의 적용성에 관한 연구)

  • Park, Jun Won;Park, Hong June;Kim, Min Ho;Oh, Yong Keol;Park, Chul Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.371-380
    • /
    • 2013
  • Though MBR process has many advantages, the greatest risk factors in operating MBR process are occurrence of membrane fouling and decrease of flux. It is very difficult to find exact mechanism due to complex influence by many effects, although there have been recently many studies of membrane fouling. The purposes of this study are firstly evaluating bioreactor of lab-scale and micro-filtration hollow fiber membrane, secondly investigating correlation between foulants affecting membrane performance and membrane fouling, and lastly evaluating various parameters affecting fouling and applicability of membrane fouling reducer. This study found that TMP was increasing rapidly and showed 0.32 bar and the average of flux was 88 LMH. EPS concentration tends not to change much above MLSS concentration (6,000 mg/L). However, EPS concentration variation is wide below MLSS concentration (6,000 mg/L). Also, from results of membrane surface condition and element analysis using SEM/EDX, carbon and fluorine were founded to be the highest percentage in membrane because of characteristics of membrane material. In operating continuously, inorganic fouling was generated by increase of these inorganic substances such as $Al^{3+}$ and $Mg^{2+}$. Lastly, the best filtration performance was obtained for 0.03 mg MFR/mg MLSS by results of particle size, zeta potential, $SCOD_{cr}$, EPS and MLSS concentration.

Analysis of Formaldehyde and Acetaldehyde in Alcoholic Beverage (유통 주류의 포름알데히드 및 아세트알데히드 함량분석)

  • Park, Young-Seok;Lee, Yun-Jeung;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1412-1419
    • /
    • 2006
  • Concentrations of formaldehyde and acetaldehy de were respectively analysed in forty-five alcoholic beverages obtained from the market. After derivatization with PFBHA, GC-ECD and GC-MSD were employed for analysis. The peak area of aldehyde oximes (derivatives with PFBHA) increased with the increasing ethanol content (5%, 10%, 15%, 20% and 40%). When three-point calibration corves for the selected ethanol concentration (5, 13, 21 and 40%, v/v) were studied, suitable linearity against ethanol concentration was observed only under 5, 13, and 21% (ethanol, v/v). After analysis, maximum content of formaldehyde (average of 0.272 ppm) and acetaldehyde (average of 15.262 ppm) among the observed 45 alcoholic beverages was found from whisk (2 species) while minimum content of formaldehyde (average of 0.009 ppm) and acetaldehyde (average of 0.805 ppm) was found from diluted soju (4 species).

Analysis of Hydrodynamic Similarity in Three-Phase Fluidized Bed Processes (삼상유동층 공정에서 수력학적 Similarity 해석)

  • Lim, Ho;Lim, Hyun-Oh;Jin, Hae-Ryoung;Lim, Dae-Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.790-797
    • /
    • 2011
  • Hydrodynamic similarity was analyzed by employing scaling factor in three phase fluidized beds. The scaling factor was defined based on the holdups of gas, liquid and solid particles and effectivity volumetric flux of fluids between the two kinds of fluidized beds with different column diameter. The column diameter of one was 0.102 m and that of the other was 0.152 m. Filtered compressed air, tap water and glass bead of which density was 2,500 kg/$m^3$ were used as gas, liquid and solid phases, respectively. The individual phase holdups in three phase fluidized beds were determined by means of static pressure drop method. Effects of gas and liquid velocities and particle size on the scaling factors based on the holdups of each phase and effective volumetric flux of fluids were examined. The deviation of gas holdup between the two kinds of three phase fluidized beds decreased with increasing gas or liquid velocity but increased with increasing fluidized particle size. The deviation of liquid holdup between the two fluidized beds decreased with increasing gas or liquid velocity or size of fluidized solid particles. The deviation of solid holdup between the two fluidized beds increased with increasing gas velocity or particle size, however, decreased with increasing liquid velocity. The deviation of effective volumetric flux of fluids between the two fluidized beds decreased with increasing gas velocity or particle size, but increased with increasing liquid velocity. The scaling factor, which was defined in this study, could be effectively used to analyze the hydrodynamic similarity in three phase fluidized processes.

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF

Development of Optimum PAC Dose Prediction Program using $^{14}C$-radiolabled MIB and HSDM ($^{14}C$-radiolabeled MIB와 HSDM을 이용한 최적 PAC 투입량 예측프로그램의 개발)

  • Kim, Young-Il;Bae, Byung-Uk;Kim, Kyu-Hyoung;Hong, Hyun-Su;Westerhoff, Paul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1123-1128
    • /
    • 2005
  • NIB(methylisoborneol) is an earthy/musty odor compound produced as a second metabolite by cyanobacteria and actinomycetes. MIB is not removed by conventional water treatment(coagulation, sedimentation, filtration) and its presence in tap water, even at low ng/L levels, can result in consumer complaints. PAC(powdered activated carbon) can effectively remove MIB when the correct dose is applied. But, since most operators in water treatment plants apply a PAC dose and then adjust that dose depending on direct observation (odor detection) after treatment, the result is often under-dose or eve,-dose. In this study, kinetic and isotherm tests using $^{14}C$-radiolabeled MIB were performed to determine coefficients for the HSDM(homogeneous surface diffusion model), including liquid film mass transfer coefficient($K_f$) and surface diffusion coefficient ($D_s$). The HSDM gave a reasonable fit and allowed prediction with the experimental data. Base on the HSDM, the authors developed an optimum PAC dose prediction program using the Excel spreadsheet. When the developed program was applied at two water treatment plants, the PAC dose based on the experience of operators in the water treatment plant was significantly different from that recommended by the newly developed program. If operators are willing to use the optimum PAC dose prediction program, it should solve dosing problems.

Separation of EPA and DHA from Fish Oil by Solubility Differences of Fatty Acid Salts in Ethanol (에탄올에 대한 지방산염의 용해도 차를 이용한 EPA와 DHA의 농축방법)

  • Han, Dae-Seok;Ahn, Byung-Hak;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.430-434
    • /
    • 1987
  • Fatty acid fraction rich in ${\omega}-3$ polyunsaturated fatty acids (${\omega}-3$, PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) could be obtained by saponification of fish oil in ethanol containing alkali hydroxide followed by cooling and filtration of the resultant solution. Fatty acid compositions of fish oil and the concentrates suggest that the ratio of number of double bonds to carbon number in a fatty acid molecule is a more important factor than the degree of unsaturation or the chain length in determining the solubility of fatty acid salts in ethanol. Water content in ethano1 affected significantly the efficiency of the separation with respect to yield and content of EPA and DHA in the concentrates; the lower the water content, the higher the efficiency. It was, however, influenced little by cooling procedure and temperature which the saponified solution experienced during the crystallization. Under an optimal condition, the contents of EPA and DHA in the concentrate increased by 2.4 and 2.5 times, respectively, as compared with those in sardine oil.

  • PDF

A New Program to Design Residual Treatment Trains at Water Treatment Plants (정수장 배출수처리시설 설계 프로그램의 개발)

  • Bae, Byung-Uk;Her, Kuk;Joo, Dae-Sung;Jeong, Yeon-Gu;Kim, Young-Il;Ha, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.277-282
    • /
    • 2007
  • For more accurate and practical design of the residual treatment train at water treatment plants(WTPs), a computational program based on the commercial spreadsheet, Microsoft Excel, was developed. The computational program for the design of a residual treatment train(DRTT) works in three steps which estimate the residual production to be treated, analyze the mass balance, and determine the size of each unit process. Of particular interest in the DRTT program, is provision for a filter backwash recycle system consisting of surge tank and sedimentation basin for more efficient recycling of backwash water. When the DRTT program was applied to the Chungju WTP, the program was very beneficial in avoiding errors which might have occurred during arithmetic calculations and in reducing the time needed to get the output. It is anticipated that the DRTT program could be used for design of new WTPs as well as the rehabilitation of existing ones.

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

The Study of Nano-vesicle Coated Powder (나노베시클 표면처리 분체의 개발연구)

  • Son, Hong-Ha;Kwak, Taek-Jong;Kim, Kyung-Seob;Lee, Sang-Min;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.45-51
    • /
    • 2006
  • In the field of makeup cosmetics, especially, powder-based foundations such as two-way cake, pact and face powder, the quality of which is known to be strongly influenced by the properties of powder, surface treatment technology is widely used as a method to improve the various characteristics of powder texture, wear properties, dispersion ability and so on. The two-way cake or pressed-powder foundation is one of the familiar makeup products in Asian market for deep covering and finishing purpose. In spite of the relent progress in surface modification method such as composition of powders with different characteristics and application of a diversity of coating ingredient (metal soap, amino acid, silicone and fluorine), this product possess a technical difficulty to enhance both of the adhesion power and spreadability on the skin in addition to potential claim of consumer about heavy or thick feeling. This article is covering the preparation and coating method of nano-vesicle that mimic the double-layered lipid lamellar structure existing between the corneocytes of the stratum corneum in the skin for the purpose of improving both of two important physical characteristic of two-way cake, spreadability and adhering force to skin, and obtining better affinity to skin. Nano-vesicle was prepared using the high-pressure emulsifying process of lecithin, pseudo ceramide, butylene glycol and tocopheryl acetate. This nano-sized emulsion was added to powder-dispersed aqueous phase together with bivalent metal salt solution and then the filtering and drying procedure was followed to yield the nano-vesicle coated powder. The amount of nano-vesicle coated on the powder was able to regulated by the concentration of metal salt and this novel powder showed the lower friction coefficient, more uniform condition of application and higher adhesive powder comparing with the alkyl silane treated powder from the test result of spreadability and wear properties using friction meter and air jet method. Two-wav cake containing newly developed coated powder with nano-vesicle showed the similar advantages in the frictional and adhesive characteristics.