• Title/Summary/Keyword: 결정론적 기법

Search Result 523, Processing Time 0.024 seconds

Study on the Scenario Earthquake Determining Methods Based on the Probabilistic Seismic Hazard Analysis (확률론적 지진재해도를 이용한 시나리오 지진의 결정기법에 관한 연구)

  • Choi, In-Kil;Nakajima, Masato;Choun, Young-Sun;Yun, Kwan-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.23-29
    • /
    • 2004
  • The design earthquake used for the seismic analysis and design of NPP (Nuclear Power Plant) is determined by the deterministic or probabilistic methods. The probabilistic seismic hazard analysis(PSHA) for the nuclear power plant sites was performed for the probabilistic seismic risk assessment. The probabilistic seismic hazard analysis for the nuclear power plant site had been completed as a part of the probabilistic seismic risk assessment. The probabilistic method become a resonable method to determine the design earthquakes for NPPs. In this study, the defining method of the probability based scenario earthquake was established, and as a sample calculation, the probability based scenario earthquakes were estimated by the de-aggregation of the probabilistic seismic hazard. By using this method, it is possible to define the probability based scenario earthquakes for the seismic design and seismic safety evaluation of structures. It is necessary to develop the rational seismic source map and the attenuation equations for the development of reasonable scenario earthquakes.

Designing Operational Effectiveness of Autonomously Decided Countermeasures (자율적으로 결정한 대응기법의 운용효과도 설계)

  • Park, So-Ryoung;Park, Hun-Woo;Ha, Ji-Su;Choi, Chae-Taek;Jeong, Un-Seob;Noh, Sang-Uk
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.11-21
    • /
    • 2012
  • It is indispensable that aircrafts in electrical warfare settings endeavour to improve their survivability by selecting optimal countermeasures against threats. In this paper, we model the successful probabilities of aircraft survivability equipments that remove threats encountered, and also propose a framework for the aircrafts to autonomously decide their countermeasures. And then, we design the operational effectiveness of the aircraft survivability equipments, and quantitatively formulate the operational effectiveness into the form of reduction in lethality (RL). We actually show how the operational effectiveness can be computed in simulated example scenarios. To verify our framework proposed in this paper, we experimented with the successful probabilities of aircraft survivability equipments and the autonomous decision-making against threats in various electronic warfare settings. In the experiments, it turns out that our agents outperform the agents that randomly choose their countermeasures, which is 12% more efficient in their performance.

Probabilistic Stability and Sensitivity Analysis for a Failed Rock Slope using a Monte Carlo Simulation (몬테카를로시뮬레이션 기법을 이용한 붕괴 암반사면의 확률론적 안정해석 및 민감도 분석)

  • Park, Sung-Wook;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.437-447
    • /
    • 2010
  • A probabilistic analysis of slope stability is an appropriate solution in dealing with uncertainty in problems related to engineering geology. In this study, a Monte Carlo simulation was performed to evaluate the performance function that is Barton's equation. A large number of randomly generated values were obtained for random variables, and the performance function was calculated repeatedly using randomly generated values. A previous study provided information of slope geometry and the random characteristics of random variables such as JRC and JCS. The present approach was adopted to analyze two failed slopes. The probabilities of failure were evaluated for each slope, and sensitivity analysis was performed to assess the influence of each random variable on the probability of failure. The analysis results were then compared with the results of a deterministic analysis, indicating that the probabilistic analysis yielded reliable results.

Analysis Technique on Time-dependent PDF (Probability of Durability Failure) Considering Equivalent Surface Chloride Content (균등 표면 염화물량을 고려한 시간 의존적 내구적 파괴확률 해석기법)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.46-52
    • /
    • 2017
  • Recently durability design based on deterministic or probabilistic method has been attempted since service life evaluation in RC(Reinforced Concrete) structure exposed to chloride attack is important. The deterministic durability design contains a reasonable method with time effect on surface chloride content and diffusion coefficient, however the probabilistic design procedure has no consideration of time effect on both. In the paper, a technique on PDF(Probability of Durability Failure) evaluation is proposed considering time effect on diffusion and surface chloride content through equivalent surface chloride content which has same induced chloride content within a given period and cover depth. With varying period to built-up from 10 to 30 years and maximum surface chloride content from $5.0kg/m^3$ to $10.0kg/m^3$, the changing PDF and the related service life are derived. The proposed method can be reasonably applied to actual durability design with preventing conservative design parameters and considering the same analysis conditions of the deterministic method.

Evaluation of Planar Failure Probability for Rock Slope Based on Random Properties of Discontinuities (불연속면의 확률특성을 고려한 암반사면의 평면파괴확률 산정)

  • 배규진;박혁진
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.97-105
    • /
    • 2002
  • Random properties of discontinuities were attributed to the limitation of test methods and lack of obtained data. Therefore, the uncertainties are pervasive and inevitable in rock slope engineering as well as other geotechnical engineering fields. The probabilistic analysis has been proposed to deal properly with the uncertainty. However, previous probabilistic approaches do not take account of the condition of kinematic instability but consider only kinetic instability. In this study, in order to overcome the limitation of the previous studies, the geometric characteristics as well as the shear strength characteristics in discontinuities are taken account into the probabilistic analysis. Then, the new approach to evaluate the probability of failure is suggested. The results of the deterministic analysis which was carried out to compare with the result of the probabilistic analysis, are somewhat different from those of the probabilistic approach. This is because the selected and used data in the deterministic approach do not take account of the random properties of discontinuities.

A Study on the Modeling of PoF Estimation for Probabilistic Risk Assessment based on Bayesian Method (확률론적 위험도평가를 위한 베이지안 기반의 파손확률 추정 모델링 연구)

  • Kim, Keun Won;Shin, Dae Han;Choi, Joo-Ho;Shin, KiSu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.619-624
    • /
    • 2013
  • To predict the probabilistic service life, statistical factors should be included to consider the uncertainty of parameters. Generally the probabilistic analysis is one of the common methods to account the uncertainty of parameters on the structural failure. In order to apply probabilistic analysis on the deterministic life analysis, it would be necessary to introduce Probability of Failure(PoF) and conduct risk assessment. In this work, we have studied probabilistic risk assessment of aircraft structures by using PoF approach. To achieve this goal, the Bayesian method was utilized to model PoF estimation since this method is known as the proper method to express the uncertainty of parameters. A series of proof tests were also conducted in order to verify the result of PoF estimation. The results from this efforts showed that the PoF estimation model can calculate quantitatively the value of PoF. Furthermore effectiveness of risk assessment approach for the aircraft structures was also demonstrated.

The Evaluation of Failure Probability for Rock Slope Based on Fuzzy Set Theory and Monte Carlo Simulation (Fuzzy Set Theory와 Monte Carlo Simulation을 이용한 암반사면의 파괴확률 산정기법 연구)

  • Park, Hyuck-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.109-117
    • /
    • 2007
  • Uncertainty is pervasive in rock slope stability analysis due to various reasons and subsequently it may cause serious rock slope failures. Therefore, the importance of uncertainty has been recognized and subsequently the probability theory has been used to quantify the uncertainty since 1980's. However, some uncertainties, due to incomplete information, cannot be handled satisfactorily in the probability theory and the fuzzy set theory is more appropriate for those uncertainties. In this study the random variable is considered as fuzzy number and the fuzzy set theory is employed in rock slope stability analysis. However, the previous fuzzy analysis employed the approximate method, which is first order second moment method and point estimate method. Since previous studies used only the representative values from membership function to evaluate the stability of rock slope, the approximated analysis results have been obtained in previous studies. Therefore, the Monte Carlo simulation technique is utilized to evaluate the probability of failure for rock slope in the current study. This overcomes the shortcomings of previous studies, which are employed vertex method. With Monte Carlo simulation technique, more complete analysis results can be secured in the proposed method. The proposed method has been applied to the practical example. According to the analysis results, the probabilities of failure obtained from the fuzzy Monte Carlo simulation coincide with the probabilities of failure from the probabilistic analysis.

A Study on the Stochastical Design of Coastal Defense System (추계학적 호안구조물 설계기법)

  • 조용준;이재일;권혁주;유하상
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.328-334
    • /
    • 2003
  • 현재 우리나라 방파제 설계의 주류를 이루는 방법은 Hudson(SPM,1984)공식과 같은 경험식을 이용하는 결정론적 방법이다 이 결정론적 방법은 사용하기에 간편한 장점이 있으나, 그 유도과정을 살펴보면 적용에 한계가 있음을 알 수 있다. 즉, 임의로 선택된 설계파로부터 구조물의 안정여부에 대한 평가만 가능하다. (중략)

  • PDF

Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis (확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석)

  • Park, Dohyun;Kim, Hyunwoo;Park, Jung-Wook;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • Multiple thermal energy storage (TES) caverns can be used for storing thermal energy on a large scale and for a high-aspect-ratio heat storage design to provide good thermal performance. It may also be necessary to consider the use of multiple caverns with a reduced length when a single, long tunnel-shaped cavern is not suitable for connection to aboveground heat production and injection equipments. When using multiple TES caverns, the separation distance between the caverns is one of the significant factors that should be considered in the design of storage space, and the optimal separation distance should be determined based on a quantitative stability criterion. In this paper, we described a numerical approach for determining the optimal separation distance between multiple caverns for large-scale TES utilization. For reliable stability evaluation of multiple caverns, we employed a probabilistic method which can quantitatively take into account the uncertainty of input parameters by probability distributions, unlike conventional deterministic approaches. The present approach was applied to the design of a conceptual TES model to store hot water for district heating. The probabilistic stability results of this application demonstrated that the approach in our work can be effectively used as a decision-making tool to determine the optimal separation distance between multiple caverns. In addition, the probabilistic results were compared to those obtained through a deterministic analysis, and the comparison results suggested that care should taken in selecting the acceptable level of stability when using deterministic approaches.

Study of Efficient Aerodynamic Shape Design Optimization with Uncertainties (신뢰성을 고려한 효율적인 공력 형상 최적 설계에 대한 연구)

  • 김수환;권장혁
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.18-27
    • /
    • 2006
  • The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods, therefore it is hard to apply directly to large-scaled problems such as an aerodynamic shape design optimization. In this study, to overcome this computational limitation the efficient RBDO procedure with the two-point approximation(TPA) and adjoint sensitivity analysis is proposed, that the computational requirement is nearly the same as DO and the reliability accuracy is good compared with that of RBDO. Using this, the 3-D aerodynamic shape design optimization is performed very efficiently.