문법체계내의 문법규칙은 규칙의 기술양식에 의해 언어특성이 결정된다. 본 논문에서는 문법 체계의 규칙기술을 위한 새로운 자질 집합 기술 (feature set description)을 제안하고, 이를 기반으로 한 파라메터화된 문맥자유문법 (parametrized context-free grammar : PCFG)을 정의하여, 자연언어의 문법규칙을 구성하는 방법에 대하여 기술한다. 자질 집합 기술은 간결한 규칙체계를 유지하면서 강력한 생성능력을 갖는 문법체계를 구현할 수 있어, 자연언어 처리 시스템에 효과적으로 적용할 수 있음을 보였다.
데이터 특성이 연속적이고 애매할 때 퍼지규칙으로 분류 규칙을 표현하는 것은 매우 유용하고 효과적이다. 그러나 일반적으로 정확하지 않은 데이터 특성에 대해서 소속함수를 결정한다는 것은 어려운 일이다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류 규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법에서 규칙의 정확성과 이해성을 고려하여 최적화된 소속함수를 생성하기 위해 진화알고리즘을 사용한다. 먼저 지도 군집화로 진화를 위한 초기 소속함수를 생성한다. 진화알고리즘은 전역적 최적 해를 찾는데 효과적이다. 그러나 시간에 대한 효율성이 낮다. 특히 모델 최적화 문제에서는 개체 평가 단계에서 많은 시간이 소요된다. 따라서 본 논문에서는 전체 데이터를 여러 개의 부분 데이터들로 나누고 개체들은 전체 데이터 대신 매번 부분 데이터를 임의적으로 선택하여 개체를 평가함으로써 수행 시간을 단축시킬 수 있는 진화 방법을 제안한다. 제안한 퍼지 분류 규칙 생성 방법의 타당성을 검증하기 위한 실험 데이터로 UCI에서 제공하는 데이터들을 사용하였으며, 실험 결과는 기존 방법에 비해 평균적으로 더 효과적임을 확인하였다.
수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만 퍼지 규칙을 이용하는 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점이 있다. 따라서 퍼지 규칙을 쉽게 이해하기 위해서는 가능한 퍼지 규칙의 수를 적게 유지하는 것이 필요하다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수골 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Plma, Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.
본 논문에서는 FCM 기반 퍼지 뉴럴네트워크 구조를 제안하고 진화 알고리즘을 이용한 FCM 기반 퍼지 뉴럴네트워크의 구조와 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM 기반 뉴럴 네트워크에서 멤버쉽함수는 가우시안, 삼각형 타입등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 후반부는 상수형, 선형, 2차식 등의 다양한 다항식 구조로 표현될 수 있으며 다항식의 계수는 LSE를 이용하여 결정한다. FCM 기반 퍼지 뉴럴 네트워크는 퍼지규칙의 수, 입력변수의 선택, 후반부 다항식의 차수, FCM의 퍼지화 계수의 결정은 성능에 많은 차이가 있으며 이러한 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 유전자 알고리즘을 이용하여 FCM 기반 퍼지뉴럴네트워크의 구조에 관련된 입력변수의 수, 퍼지규칙의 수 그리고 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화 한다. 제안된 방법은 비선형 시스템의 모델링에 적용하여 성능을 분석하였다.
본 논문은 한국어정보처리 과정에서 규칙과 확률을 이용하여 구문 관계를 의미역으로 사상시키는 방법을 제시하고 있다. 의미역의 결정은 의미 분석의 핵심 작업 중 하나이며 자연어처리에서 해결해야 하는 매우 중요한 문제중 하나이다. 일반적인 언어학 지식과 경험만 가지고 의미역 결정 규칙을 기술하는 것은 작업자의 주관에 따라 결과가 많이 달라질 수 있으며, 또 모든 경우를 다룰 수 있는 규칙의 구축은 불가능하다. 하지만 본 논문에서 제시하는 혼합 방법은 대량의 원시 말뭉치를 분석하여 실제 언어의 다양한 사용례를 반영하며, 또 수십 명의 한국어학자들이 심도 있게 구축하고 있는 세종전자사전의 격틀 정보도 함께 고려하기 때문에 보다 객관적이고 효율적인 방법이라 할 수 있다. 의미역을 보다 정확하게 결정하기 위해 구문관계, 의미부류, 형태소 정보, 이중주어의 위치정보 등의 자질 정보를 사용하였으며, 특히 의미부류의 사용으로 인해 적용률이 향상되는 효과를 가져올 수 있었다.
본 연구의 목적은 대사증후군이 당뇨병으로 확대되는 것을 방지하는데 이용할 수 있는 구체적인 분류 규칙을 도출하는 것이다. 좀 더 구체적으로 말하면, 대사증후군을 앓고 있는 사람들을 당뇨병이 없는 사람 (class 0)과 당뇨병이 있는 사람(class 1)으로 구별해 내는 분류하는 규칙을 찾는 것이다. 본 연구는 국민건강영양조사 데이터를 수집하여 데이터 전처리 과정들을 거친 후 의사결정나무를 구축하였다. 생성된 의사결정나무로부터 유용한 5개의 분류 규칙을 도출하였는데, 이들의 평균 분류 정확도는 75.8%이었다. 또한, 생성된 의사결정나무로부터 고혈압 여부와 허리둘레가 class 0 그룹과 class 1 그룹으로 분류하는데 있어서 중요한 요인임을 알 수 있었다. 이번 연구 결과는 의사들이 향후 대사증후군 환자가 당뇨환자가 되지 않도록 치료하는데 좋은 지침이 될 것으로 기대된다.
이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.
한글은 중심어 후행성과 어순의 자유성, 격을 결정하는 조사의 생략 등으로 인해 영어권에서 연구되어진 변형 생성 문법이나 어휘 함수 문법, 구구조문법류 등이 적용되기 어려운 문제점을 가지고 있고 관형적인 표현이 많아 구문 규칙 만으론 분석하기 쉽지 않기 때문에 사전에 의존해야 하는 경우가 많으므로 이에 적합한, 사전을 구성하고자 한다. 그러나 기존의 태그와 키워드만으로 구성된 사전만으로 어려운 점이 많고, 이 때문에 문법 규칙을 같이 적용하게 되는데 이 규칙을 보통 알고리즘을 이나 수작업을 통해 사전으로 구성하므로 정확성도 떨어진다. 저자는 이 과정을 코퍼스를 통해 구성하여 시간을 줄이고 결합 정보 또한 보다 견고하게 구성하기 위해 통계 정보-코퍼스 내에서 결합이 사용된 빈도-에 따라 순위를 결정할 수 있도록 구성하였다. 이를 보다 확장하여 구문분석 시에도 활용할 수 있도록 분석된 단어간의 결합 정보와 그 결합이 사용된 빈도를 포함하여 구문 결합 정보 사전을 구성하고자 한다. 이는 기존의 의존 문법이나 구문 관계를 이용하여 구문분석을 할 경우 올바른 트리의 결합 관계를 검색할 때 쓰여질 수 있다.
대한산업공학회/한국경영과학회 1993년도 춘계공동학술대회 발표논문 및 초록집; 계명대학교, 대구; 30 Apr.-1 May 1993
/
pp.265-274
/
1993
정보화 사회에서 대량으로 생산된 데이타 코드들은 일관된 설계 원칙없이 필요할 때마다 만들어 사용함으로써 정보의 중복 저장 및 정보교환에 있어서의 변환 작업등으로 인한 경비의 소요가 상당한 실정이다. 이러한 문제점에 대한 해결책으로 본 논문에서는 데이타코드 설계자가 일관성있게 데이타코드를 생성할 수 있도록 도와주는 데이타 코드 생성 지원 전문가 시스템의 설계에 관하여 연구하였다. 불완전 영역 설계를 위한 지식 획득과 표현에 적합한 전문가 시스템 쉘인 GUESS(Guideline Underlying Expert system Shell)를 설계하였다. GUESS는 전문가 시스템을 설계 지원 도구로 사용하는 사용자에게 기존에 작성된 적절한 설계 용례를 선택의 기준으로 제공하며, 유연성 있는 작업 지침들을 규칙으로 포함하고 있다. GUESS는 Prolog언어를 기반으로 한 추론기관과 설계지침을 포함하는 정적지식, 외부 데이타베이스를 연결한 동적 정보, 설계 세부방법을 담고 있는 부가도구들로 구성된다. GUESS/DCG는 데이타 코드 생성을 지원하기 위하여 데이타 코드의 유형과 선택기준 및 설계원리를 정적지식으로 가지며, 이를 경험적으로 탐색하는 추론 기관 및 사용자인 데이타 코드 설계자와 적절한 대화식 접근을 가능하게 하는 설명부분과 대화 인터페이스를 GUESS를 바탕으로 구현한 것이다. 특히 동적 정보의 적절한 이용과 데이타 코드의 통합된 저장, 일관성 있는 운영을 보장하기 위하여 개발중인 데이타 코드 관리시스템과의 인터페이스 부분을 추가하여 기존에 운영되고 있는 데이타 코드의 참고와 호환성, 확장성을 유지하였다. 이 시스템은 데이타 코드 관리시스템에 일관된 생성 수단을 제공하는것 외에도, 각 기관에서 대량으로 작성되는 데이타 코드를 유지, 보수하는 작업에도 큰 기여를 할 것이다.지의 선택작업이 행해지는 경우에 촛점을 맞추었다. 그리하여 다작업장의 휴리스틱에 의거한 작업순서 결정을 위해 우선 BB의 상한을 구하는 연구를 행했다. 이를 위해 우선 단일작업장에서 야기될 수 있는 모든 상황을 고려한 최적 작업순서 결정규칙을 연구했으며, 이의 증명을 위해 이 규칙에 의거했을 때의 보완작업량이 최소가 된다는 것을 밝혔다. 보완작업 계산의 효율성을 제고하기 위해 과부하(violation)개념을 도입하였으며, 작업유형이 증가된 상황에서도 과부하 개념이 보완작업량을 충분히 반영할 수 있음을 밝혔다. 본 연구에서 제시한 최적 작업순서 규칙에 의거했을 때 야기될 수 있는 여러가지 경우의 과부하를 모두 계산했다. 앞에서 개발된 단일작업량의 최적 작업순서 결정규칙을 이용하여 다작업장의 문제를 실험했다. 이 문제는 규모가 매우 크므로 Branch & Bound를 이용하였으며, 각 가지에서 과부하량이 최적인 경우만을 고려하는 휴리스틱을 택하여 실험자료를 이용하여 여러 회 반복실험을 행했다. 그리고 본 연구의 성과를 측정하기 위해 휴리스틱 기법시 소요되는 평균 CPU time 범위에서, 랜덤 작업순서에 따른 작업할당을 반복실험하여 이중 가장 좋은 해와 비교했다. 그러나 앞으로 다작업장 문제를 다룰 때, 각 작업장 작업순서들의 상관관계를 고려하여 보다 개선된 해를 구하기 위한 연구가 요구된다. 또한, 준비작업비용을 발생시키는 작업장의 작업순서결정에 대해서도 연구를 행하여, 보완작업비용과 준비비용을 고려한 GMMAL 작업순서문제를 해결하기 위한 연구가 수행되어야 할 것이다.로 이루어 져야 할 것이다.태를 보다 효율적으로 증진시킬 수 있는 대안이 마련되어져야 한다고 사료된다.$\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에도
대용량의 데이터베이스에서 효율적인 의사결정을 하기 위해서는 불필요한 지식을 제거한 지식베이스의 구축이 필요하다. 사용자의 언어적인 질의에 대해 대용량의 데이터베이스에서 불필요한 규칙을 제거한 최소지식베이스를 구축한다. 또한 불완전한 데이터베이스로부터 규칙들을 일반화한 근사함수에 기반하여 규칙 추출의 중요도를 나타낸다. 그리고 앞에서 생성된 최소지식베이스를 통해 언어적 변수에 대한 퍼지 연산을 수행하여 추론값을 도출할 수 있는 모델을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.