• Title/Summary/Keyword: 결정규칙

Search Result 942, Processing Time 0.025 seconds

Korean Morphological Analyzer and POS Tagger Just Using Finite-State Transducers (유한상태변환기만을 이용한 한국어 형태소 분석 및 품사 태깅)

  • Park, Won-Byeong;Kim, Jae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.165-168
    • /
    • 2006
  • 이 논문은 유한상태변환기만을 이용하여 한국어 형태소 분석 및 품사 태깅 시스템을 제안한다. 기존의 한국어 형태소 분석 시스템들은 규칙기반 형태소 분석기가 주를 이루고 한국어 품사 태깅 시스템은 은닉마르코프 모델 기반 품사 태깅이 주를 이루었다. 한국어 형태소 분석의 경우 유한상태변환기를 이용한 경우도 있었으나, 이 방법은 변환기를 작성하기 위한 규칙을 수작업으로 구축해야 하며, 그 규칙에 따라서 사전이 작성되어야 한다. 이 논문에서는 품사 태깅 말뭉치를 이용해서 유한상태변환기에서 필요한 모든 변환 규칙을 자동으로 추출한다. 이런 방법으로 네 종류의 변환기, 즉, 자소분리변환기, 단어분리변환기, 단어형성변환기, 품사결정변환기를 자동으로 구축한다. 구축된 변환기들은 결합연산(composition operation)을 이용하여 하나의 유한상태변환기를 구성하여 한국어 형태소 분석과 동시에 한국어 품사 태깅을 수행한다. 이 방법은 하나의 유한상태변환기만을 이용하기 때문에 복잡도는 선형시간(linear complexity)을 가지면, 형태소 분석기와 품사 태깅 시스템을 매우 짧은 시간 내에 개발 할 수 있었다.

  • PDF

Generally non-linear regression model containing standardized lift for association number estimation (연관성 규칙 수의 추정을 위한 일반적인 비선형 회귀모형에서의 표준화 향상도 활용 방안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.629-638
    • /
    • 2016
  • Among data mining techniques, the association rule is one of the most used in the real fields because it clearly displays the relationship between two or more items in large databases by quantifying the relationship between the items. There are three primary quality measures for association rule; support, confidence, and lift. We evaluate association rules using these measures. The approach taken in the previous literatures as to estimation of association rule number has been one of a determination function method or a regression modeling approach. In this paper, we proposed a few of non-linear regression equations useful in estimating the number of rules and also evaluated the estimated association rules using the quality measures. Furthermore we assessed their usefulness as compared to conventional regression models using the values of regression coefficients, F statistics, adjusted coefficients of determination and variation inflation factor.

Adverbs as Aspectual Markers (상표지로서의 부사 '거의')

  • 송현석;이정민
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.150-154
    • /
    • 2000
  • 동사의 종류와 곡용, 논항의 종류와 격 등 문장의 상을 결정하는 요인들은 여러 가지이다(Tenny 1994). 그러나 실제 자연언어처리에서 상 결정 요소들의 복잡한 조합은 기계가 문장의 상을 파악하는 작업을 더욱 어렵게 만들뿐이다. 본 논문에서는 다양한 상 결정 요인을 참조하지 않고 특정 부류의 부사에 의존하여 문장의 상을 결정하는 방법을 제안하고자 한다. 부사는 이른바 불변화사로 분류하는 품사 중의 하나로 통사적 혹은 형태소적 규칙의 적용을 받아 변형하지 않는다. 따라서 기계는 복잡한 형태소 분석을 통하지 않는 부사를 포착하기가 쉽다. 이와 같은 이점을 지닌 부사가 통사적 분석을 토대로 파악할 수 있는 문장의 의미인 상에 대한 표지임을 증명하여 자연언어처리의 간결함을 확보하고자 하는 것이 본 논문의 목적이다.

  • PDF

Nondegenerate Monopole Mode of Single Cell Two-dimensional Triangular Photonic Band Gap Cavity (2차원 단일 셀 삼각형 광결정 공진기에서의 비축퇴된 홀극 모드에 관한 연구)

  • Heo, Jun;Hwang, Jung-Ki;Lee, Yong-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.16-17
    • /
    • 2001
  • 광결정(photonic crystal)은 서로 다른 유전체가 규칙적으로 배열되어 있는 구조로서, 빛이 진행할 수 없는 진동수 영역인 광밴드갭(photonic bandgap)이 존재한다. 광밴드갭 특성으로 빛의 자발 방출과 진행 방향이 조절될 수 있기 때문에, 광결정은 나노 레이저, 광도파관, LED(Light Emitting Diode) 등의 광소자 개발에 응용되고 있다. 지금까지 2차원, 3차원의 광결정에 대한 많은 연구가 수행되어 왔으며, 현재에는 2차원의 슬랩(slab) 구조에 대해 활발하게 연구되고 있다. (중략)

  • PDF

Effective Studying Methods during a School Vacation: A Data Mining Approach (데이타 마이닝을 사용한 방학 중 학습방법과 학업성취도의 관계 분석)

  • Kim, Hea-Suk;Moon, Yang-Sae;Kim, Jin-Ho;Loh, Woong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2007
  • To improve academic achievement, the most students not only participate in regular classes but also take various extra programs such as private lessons, private institutes, and educational TV programs. In this paper, we propose a data mining approach to identify which studying methods or usual life patterns during a school vacation affect changes in the academic achievement. First, we derive various studying methods and life patterns that are thought to be affecting changes in the academic achievement during a school vacation. Second, we propose the method of transforming and analyzing data to apply them to decision trees and association rules, which are representative data mining techniques. Third, we construct decision trees and find association rules from the real survey data of middle school students. We have discovered four representative results from the decision trees. First, for students in the higher rank, there is a tendency that private institutes give a positive effect on the academic achievement. Second, for the most students, the Internet teaming sites nay give a negative effect on the achievement. Third, private lessons that have thought to be making a large impact to the achievement, however, do not make a positive effect on the achievement. Fourth, taking several studying methods in parallel nay give a negative effect on the achievement. In association rules, however, we cannot find any meaningful relationships between academic achievement and usual life patterns during a school vacation. We believe that our approach will be very helpful for teachers and parents to give a good direction both in preparing a studying plan and in selecting studying methods during a school vacation.

Using rough set to develop the optimization strategy of evolving time-division trading in the futures market (러프집합을 활용한 캔들스틱 트레이딩 최적화 전략)

  • Kim, Hyun-Ho;Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.881-893
    • /
    • 2012
  • This paper proposes to develop system trading strategy using rough set, decision tree in futures market. While there is a great deal of literature about the analysis of data mining, there is relatively little work on developing trading strategies in futures markets. There are three objectives in this paper. The first objective is to analysis performance of decision tree in rule-based system trading. The second objective is to find proper profitable trading interval. The last objective is to find optimized training period of trading rule training. The results of this study show that proposed model is useful trading strategy in foreign exchange market and can be desirable solution which gives lots of investors an important investment information.

A Study on the Determination System of Process Conditions for Moldability by Using Fuzzy Logic (퍼지논리에 의한 최적 성형조건 결정 시스템에 관한 연구)

  • 강성남;허용정
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2002
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Any factors that increase the resistance of polymer melt to flow or prohibit delivery of sufficient material into the cavity can cause a short shot. Inappropriate injection pressure is one of the most common factors which cause a short shot. Conventionally, domain experts in injection molding decide and modify the pressure based on their experience. It is difficult for a non-expert to decide the pressure properly with the considerations such as a part dimension, shape, and other processing variables. In this study, fuzzy algorithm is proposed to standardize the empirical determination of the pressure so that not only the experts but also non-experts can find the appropriate injection pressure easily. To acquire the more accurate results. domain experts should be interviewed and then technical documents which are collected from the experts should be restored in the fuzzy rule base. But in this study, simulations have been done by using C-MOLD to settle the rule base because it takes much time and also it's difficult to meet and interview the experts.

  • PDF

Streaming Decision Tree for Continuity Data with Changed Pattern (패턴의 변화를 가지는 연속성 데이터를 위한 스트리밍 의사결정나무)

  • Yoon, Tae-Bok;Sim, Hak-Joon;Lee, Jee-Hyong;Choi, Young-Mee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.94-100
    • /
    • 2010
  • Data Mining is mainly used for pattern extracting and information discovery from collected data. However previous methods is difficult to reflect changing patterns with time. In this paper, we introduce Streaming Decision Tree(SDT) analyzing data with continuity, large scale, and changed patterns. SDT defines continuity data as blocks and extracts rules using a Decision Tree's learning method. The extracted rules are combined considering time of occurrence, frequency, and contradiction. In experiment, we applied time series data and confirmed resonable result.

Efficient Fuzzy Rule Generation Using Fuzzy Decision Tree (퍼지 결정 트리를 이용한 효율적인 퍼지 규칙 생성)

  • 민창우;김명원;김수광
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.59-68
    • /
    • 1998
  • The goal of data mining is to develop the automatic and intelligent tools and technologies that can find useful knowledge from databases. To meet this goal, we propose an efficient data mining algorithm based on the fuzzy decision tree. The proposed method combines comprehensibility of decision tree such as ID3 and C4.5 and representation power of fuzzy set theory. So, it can generate simple and comprehensive rules describing data. The proposed algorithm consists of two stages: the first stage generates the fuzzy membership functions using histogram analysis, and the second stage constructs a fuzzy decision tree using the fuzzy membership functions. From the testing of the proposed algorithm on the IRIS data and the Wisconsin Breast Cancer data, we found that the proposed method can generate a set of fuzzy rules from data efficiently.

  • PDF

Practical and Flexible Decision-Making Using Compilation in Time-Critical Environments (시간 제약적인 환경에서 컴파일 기법을 사용한 실질적이며 유연한 의사결정 방법)

  • 노상욱
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1220-1227
    • /
    • 2003
  • To perform rational decision-making, autonomous agents need considerable computational resources. When other agents are present in the environment, these demands are even more severe. In these settings, it may be difficult for the agent to decide what to do in an acceptable time in multiagent situations that involve many agents. These problems motivate us to investigate ways in which the agents can be equipped with flexible decision-making procedures that enable them to function in a variety of situations in which decision-making time is important. The flexible decision-making methods explicitly consider a tradeoff between decision quality and computation time. Our framework limits resources used for agent deliberation and produces results that are not necessarily optimal, but provide autonomous agents with the best decision under time pressure. We validate our framework with experiments in a simulated anti-air defense domain. The experiments show that compiled rules reduce computation time while offering good performance.