군 병원에서는 장병들에 대한 진단과 처방 과정을 보다 효율적으로 지원하기 위해 진료 의사결정지원 시스템의 도입이 요구되고 있다. 본 논문에서는 시맨틱 웹 기술을 기반으로 구현된 군 병원을 위한 진료 의사결정지원 시스템을 제안하고자 한다. 이를 위해, 의료 지원에 사용되는 다양한 개념들과 지식들로 구성된 국방 의료 온톨로지와 국방 의료 규칙을 구축하였고, 구축된 온톨로지와 규칙이 환자 진료에 활용되는 것을 보여주기 위해 진료 의사결정지원 시스템을 구현하였다. 또한 진료 의사결정지원 시스템을 통해 작성된 진료 기록들을 활용하여 의미 기반 검색이 수행되는 과정을 설명하였다.
본 논문은 인공신경망과 귀납적 학습방법 등의 인공지능 방법과 선물가격결정에 대한 기존 재무이론을 사용하여 일상어취로 표현되는 파생상품 가격예측 모형을 개발하는데 있다. 모형의 개발은 1단계로 인공신경망이나 기존의 선물가격결정이론(평균보 유비용모형이나 일반균형모형)을 이용하여 선물 가격을 예측한 후, 서로 비교 분석하여 인공신경망 모형의 우수성을 확인하였다. 귀납적 학습방법중 CART 알고리듬을 사용하여 If-Then 규칙을 생성하였다. 특히 실용적 측면에서 선물가격의 일상어휘화를 통한 모형개발을 여러 가지 방법으로 시도하였다. 이러한 선물가격 예측모형의 유용성은 일단 If-Then 규칙으로 표현되어 전문가의 판단에 확실한 이론적인 근거를 제시할 수 있는 장점이 있으며, 특히 의사결정지원시스템으로 활용화 될 경우 매우 유용한 근거자료로 활용될 수 있다. 이러한 선물가격 예측모형의 정확성은 분석표본과 검증표본으로 나누어 검증표본에서 세가지 기본모형(평균보유 비용모형, 일반균형모형, 인공신경망 모형)과 각 모형의 귀납적 학습방법 모형의 다른 3가지 어휘표현방법 3가지를 모형별로 비교 분석하였다. 분석결과 인공신경망모형은 상당한 예측력을 갖고 있는 것으로 판명되었으며, 특히 CART를 기반으로 한 일상어취 기반의 선물가격예측 모형은 예측력이 높은 것으로 나타났다.
본 연구는 국내 공공 DB에 데이터마이닝 기법인 로지스틱 회귀분석과 의사결정나무 분석을 적용하여 국내 청소년의 삶의 만족도 증진에 관한 의미 있는 의사결정 규칙을 추출하는 과정을 분석한다. 분석을 위하여 한국아동·청소년패널조사(KYCPS) 중에서 중1 패널데이터의 4~6차연도 자료인 고등학생 학년별 자료를 활용하였다. 로지스틱 회귀분석으로 추출된 영향요인은 1학년은 전체 성적 만족도, 주의집중 문제, 우울, 자아 탄력성, 애정, 과잉간섭, 학습활동, 교사관계, 2학년은 가정의 경제 수준, 건강상태, 전체 성적 만족도, 신뢰, 소외, 학습활동, 학교규칙, 교우관계, 교사 관계, 3학년은 가정의 경제 수준, 전체 성적 만족도, 우울, 자아 탄력성, 애정, 학대, 학교규칙, 교사 관계로 나타났다. 의사결정나무 기법을 적용한 결과 국내 고등학생의 삶의 만족도는 개인의 정서 문제, 학교성적, 가정의 경제적 환경, 학교적응 등에 의하여 복합적으로 영향을 받는 것으로 파악되었다.
Journal of the Korean Data and Information Science Society
/
제21권6호
/
pp.1147-1154
/
2010
데이터 마이닝의 중요 목표 중의 하나는 여러 변수들 간의 관계를 발견하고 결정하는 것이다. 이를 위해 필요한 기법인 연관성 규칙은 각 항목들 간의 관련성을 찾아내는 데 활용되며, 지지도, 신뢰도, 향상도 등의 연관성 측도를 기반으로 두 항목간의 관계를 수치화함으로써 의미 있는 규칙을 찾아 낸다. 본 논문에서는 수익성이 가장 높은 고객을 찾기 위해 고객 정보를 이용하는 기법으로 가장 널리 사용되어온 방법인 알에프엠 기법을 항목에 적용하여 항목의 알에프엠 점수를 항목의 중요도로 고려하여 가중 연관성 규칙의 평가기준을 제시하였다. 모의실험에서는 일반적인 연관성 규칙과 알에프엠 점수를 가중치로 한 가중 연관성 규칙의 유용성을 비교하였다.
점차 네트워크상의 침입 시도가 증가되고 다변화되어 침입탐지에 많은 어려움을 주고 있다. 시스템에 새로운 침입에 대한 탐지능력과 다량의 감사데이터의 효율적인 분석을 위해 데이터마이닝 기법이 적용된다. 침입탐지 방법 중 비정상행위 탐지는 모델링된 정상행위에서 벗어나는 행위들을 공격행위로 간주하는 기법이다. 비정상행위 탐지에서 정상행위 모델링을 하기 위해 연관규칙이나 빈발에피소드가 적용되었다. 그러나 이러한 기법들에서는 시간요소를 배제하거나 패턴들의 발생순서만을 다루기 때문에 정확하고 유용한 정보를 제공할 수 없다. 따라서 이 논문에서는 이 문제를 해결할 수 있는 시간연관규칙과 분류규칙을 이용한 비정상행위 탐지 모델을 제안하였다. 즉, 발생되는 패턴의 주기성과 달력표현을 이용, 유용한 시간지식표현을 갖는 시간연관규칙을 이용해 정상행위 프로파일을 생성하였고 이 프로파일에 의해 비정상행위로 간주되는 규칙들을 발견하고 보다 정확한 비정상행위 판별 여부를 결정하기 위해서 분류기법을 적용하였다.
입?출력 데이터 쌍만을 이용하여 규칙 및 소속 함수를 자동적으로 결정하는 자기 학습 퍼지 알고리즘 중에서, 가장 이해하기 용이하고 퍼지 규칙 및 소속 함수 생성이 빠른 방법으로 기울기 강하를 이용한 방법들이 있다. 기울기 강하를 이용한 방법중에서 가장 대표적인 Araki가 제안한 방법은 퍼지 조건부가 퍼지 집합 형태이고 결론부는 단일값으로 구성된 알고리즘으로써 입력 퍼지 공간을 세분화하면서 시스템을 규명해나가는 간단하면서도 효율적인 알고리즘이다. 그러나 이 방법은 퍼지 입력 변수가 증가하면 퍼지 공간이 세분화 되면서 소속 함수 및 규칙 생성 개수가 급격히 제곱배로 증가하는 문제점을 가지고 있다. 따라서, 본 논문에서는 퍼지 입력 변수가 증가함에 따라 급격히 퍼지 규칙 및 소속 함수의 수가 증가하는 Araki 알고리즘의 문제점을 분석하여 소속 함수 및 규칙 수의 급격한 증가를 억제하고 Araki 방법에 비해 학습속도가 현저히 향상된 새로운 방안을 제안한다. 연구 결과, Arki 방법이 입력 변수의 개수가 증가 할수록 규칙 수가 기하 급수적으로 많이 필요하였던 것에 비해 제안한 방법은 훨씬 적은 규칙 수로 우수한 성능을 얻을 \ulcorner 있었다.
본 논문은 대규모 데이터베이스에서 의사 결정을 위한 지식을 효율적으로 추출하기 위해 개념 상승과 속성 감축에 기반한 통합적 방법을 제안한다. 본 방법은 클리스터링 기법에 의해 개념 트리를 자동생성하고 개념 상승기법에 의해 데이터 베이스를 일반화하며 속성의 중요도를 사용한 속성 감축에 의해 최적감축을 하고 식별가능 행렬과 함수를 사용하여 효율적으로 속성값을 감축하여 최적의 최소결정 규칙을 유도한다. 본 방법은 투자 계획이나 가격 결정과 같은 의사결정 업무 각종 고장 진단이나 의료 진단을 위한 지식 베이스구축 마케팅 분석이나 실험 데이터 분석 고수준의 질의 에 의한 정보검색 등에 효과적으로 사용될수 있다.
주어진 사례의 집합으로부터 그 사례들을 분류할 수 있는 프러스펙터 규칙 유형의 분류 규칙들을 습득하는 학습 시스템을 유전자 알고리즘을 이용하여 구현하였다. 유전자 알고리즘을 이용한 학습 시스템의 구현에서 개체 집단은 규칙 집합으로 구성되고 규칙 집합은 교배, 돌연 변이, 역치 연산자 등의 유전 연산자를 이용하여 규칙 집합내의 규칙을 교환함으로써 새로운 자식을 생성한다. 본 논문에서는 구현된 학습 환경을 분류 규칙의 구문 형태와 의미, 개체 집단의 구조 및 유전 연산자의 구현 등을 중심으로 설명한다. 효율적인 돌연변이 연산자의 구현을 위해 개발된 규칙 성능 평가 기법과 규칙생성 기법을 소개하고 분류 성능을 향상시키기 위한 기법으로 다수의 규칙 집합을 이용하여 분류 시스템을 구축하기 위한 기법을 소개한다. 본 연구를 통해 구현된 학습 시스템의 성능을 다양한 사례 집합을 이용하여 평가하고 이를 신경망, 결정 트리 등과 비교하였다.
La이 첨가되고 또한 첨가되지 않은 $Pb(Mg_{1/3}Nb_{2/3})O_3$ 고용체에서 Mg과 Nb의 비화학양론적인 구조 규칙화 현상이 고분해능 전자현미경과 컴퓨터 이미지 시뮬레이션에 의해 연구되었다. 고분해능 격자 이미지는 여러 이미지 형성 조건과 대물렌즈 구경에서 얻었다. 컴퓨터 이미지 시뮬레이션은 여러 시편 두께, 초점 거리, 장거리 규칙도에서 실시되었다. 규칙격자 구조를 가지는 영역의 격자 이미지는 장거리 규칙도에 크게 의존되는 것이 발견되었다. 규칙격자 구조를 가지는 영역에 있어서, 실험 격자 이미지와 컴퓨터 시뮬레이션 이미지의 비교로부터, 규칙격자 구조를 가지는 영역의 장거리 규칙도는 $0.2\sim0.7$의 간을 가지고 있는 것이 관찰되었다. 또한 규칙격자는 $(NH_4)_3FeF_6$ 결정구조를 가지고 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.