• Title/Summary/Keyword: 결정규칙

Search Result 942, Processing Time 0.031 seconds

Suboptimal Decision Fusion in Wireless Sensor Networks under Non-Gaussian Noise Channels (비가우시안 잡음 채널을 갖는 무선 센서 네트워크의 준 최적화 결정 융합에 관한 연구)

  • Park, Jin-Tae;Koo, In-Soo;Kim, Ki-Seon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Decision fusion in wireless sensor networks under non-Gaussian noise channels is studied. To consider the tail behavior noise distributions, we use a exponentially-tailed distribution as a wide class of noise distributions. Based on a canonical parallel fusion model with fading and noise channels, the likelihood ratio(LR) based fusion rule is considered as an optimal fusion rule under Neyman-Pearson criterion. With both high and low signal-to-noise ratio (SNR) approximation to the optimal rule, we obtain several suboptimal fusion rules. and we propose a simple fusion rule that provides robust detection performance with a minimum prior information, Performance evaluation for several fusion rules is peformed through simulation. Simulation results show the robustness of the Proposed simple fusion rule.

  • PDF

A Study on the Knowledge Base Development of Expert System for Naval Combat System (해군 전투체계 지원용 전문가시스템의 지식베이스 개발에 관한 연구(구축함 중심))

  • 김화수;이정훈
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.183-192
    • /
    • 2002
  • 본 논문에서는 구축함의 대공방어분야에 대한 업무를 IDEF0기능 모델링 방법을 통해 체계적으로 분석하였으며 미국방성의 산하기구인 DARPA에서 연구한 CPOF(Command Post Of Future) 의사결정 모델을 토대로 구축함의 대공방어분야에서 상황평가 단계에 대한 의사결정 과정을 심도 깊게 분석하였다. 또한 구축함의 대공방어분야에서 분석된 업무수행 절차를 토대로 상황평가 단계에서 의사결정과정에 따른 필요한 규칙집합을 식별하고 규칙집합 내부의 규칙들을 효과적으로 추출하기 위하여 규칙집합들에 대한 정의, 규칙에 입력되는 데이터, 규칙집합의 결과값, 규칙집합간의 상호관계를 분석하였다. 이러한 도메인 지식개발은 장차 해군 전투체계 지원용 전문가시스템을 개발하는데 중요한 기회기반이 될 것이다.

  • PDF

A Study on the Expert System Development for Making Decision of Fire Allocation Using Intelligence of Battlefield (전장정보를 활용한 화력분배 의사결정지원 전문가시스템 개발에 관한 연구)

  • 김화수;노명종;조동래;김응수
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.89-98
    • /
    • 1999
  • 현대전에서는 첩보와 정보의 수집 및 분석 능력과 이를 이용한 효과적인 의사결정을 전쟁의 승패를 좌우할 수 있는 중요한 요소이다. 이를 위하여 첩보와 정보 수집 및 분석을 자동화하기 위한 전장정보분석 자동화에 관한 연구가 국방과학연구소 주관으로 실시되고 있다. 따라서 이와 연계된 의사결정 자동화에 관한 연구가 필요하게 되었다. 본 논문에서는 이러한 요구에 부응할 수 있는 전장정보를 활용한 의사결정의 중요한 한 분야인 화력분야를 자동화하기 위한 전문가시스템 지식베이스의 분석 및 설계에 관한 연구이다. 화력분야 의사결정은 아군의 가용 화력자산을 효과적으로 운용하는 화력분배가 중심이 되며 이 업무는 화력분배에 전문적인 지식을 가진 장교에 의해 실시된다. 이러한 화력분배 자동화를 위하여 본 논문에서는 화력분배와 관련된 현행 업무 관련 지식을 획득 및 분석하고 이를 바탕으로 규칙집합을 추출하였으며 규칙 집합들간의 상호관계, 입력요소, 출력결과 등을 식별하였다. 또한 규칙집합별로 세부적인 규칙을 도출하였고 객체지향기법을 이용한 클래스, 객체, 속성들을 식별하여 에디터를 이용해 지식베이스를 구축할 수 있도록 설계를 완료하였다.

  • PDF

World Sense Disambiguation using Multiple Feature Decision Lists (다중 자질 결정 목록을 이용한 단어 의미 중의성 해결)

  • 서희철;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.659-671
    • /
    • 2003
  • This paper proposes a method of disambiguating the senses of words using decision lists, which consists of rules with confidence values. The rule of decision list is composed of a boolean function(=precondition) and a class(=sense). Decision lists classify the instance using the rule with the highest confidence value that is matched with it. Previous work disambiguated the senses using single feature decision lists, whose boolean function was composed of only one feature. However, this approach can be affected more severely by data sparseness problem and preprocessing errors. Hence, we propose multiple feature decision lists that have the boolean function consisting of more than one feature in order to identify the senses of words. Experiments are performed with 1 sense tagged corpus in Korean and 5 sense tagged corpus in English. The experimental results show that multiple feature decision lists are more effective than single feature decision lists in disambiguating senses.

Decision process for right association rule generation (올바른 연관성 규칙 생성을 위한 의사결정과정의 제안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.263-270
    • /
    • 2010
  • Data mining is the process of sorting through large amounts of data and picking out useful information. An important goal of data mining is to discover, define and determine the relationship between several variables. Association rule mining is an important research topic in data mining. An association rule technique finds the relation among each items in massive volume database. Association rule technique consists of two steps: finding frequent itemsets and then extracting interesting rules from the frequent itemsets. Some interestingness measures have been developed in association rule mining. Interestingness measures are useful in that it shows the causes for pruning uninteresting rules statistically or logically. This paper explores some problems for two interestingness measures, confidence and net confidence, and then propose a decision process for right association rule generation using these interestingness measures.

Korean Part-of-Speech Tagging Error Correction Method Based on Statistical Decision Graph Learning (통계적 결정 그래프 학습 방법을 이용한 한국어 품사 부착 오류 수정)

  • Ryu, Won-Ho;Lee, Sang-Zoo;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.123-129
    • /
    • 2001
  • 지금까지 한국어 품사 부착을 위해 다양한 모델이 제안되었고 95% 이상의 높은 정확도를 보여주고 있다. 그러나 4-5%의 오류는 실제 응용 분야에서 많은 문제를 야기시킬 수 있다. 이러한 오류를 최소화하기 위해서는 오류를 분석하고 이를 수정할 수 있는 규칙들을 학습하여 재사용하는 방범이 효과적이다. 오류 수정 규칙을 학습하기 위한 기존의 방법들은 수동학습 방법과 자동 학습 방법으로 나눌 수 있다 수동 학습 방법은 많은 비용이 요구되는 단점이 있다. 자동 학습 방법의 경우 모두 변형규칙 기반 접근 방법을 사용하였는데 어휘 정보를 고려할 경우 탐색 공간과 규칙 적용 시간이 매우 크다는 단점이 있다. 따라서 본 논문에서는 초기 모델에 대한 오류 수정 규칙을 효율적으로 학습하기 위한 새로운 방법으로 결정 트리 학습 방법을 확장한 통계적 결정 그래프 학습 방법을 제안한다. 제안된 방법으로 두 가지 실험을 수행하였다. 초기 모델의 정확도가 높고 말뭉치의 크기가 작은 첫 번째 실험의 경우 초기 모델의 정확도 95.48%를 97.37%까지 향상시킬 수 있었다. 초기 모델의 정확도가 낮고 말뭉치 크기가 큰 두 번째 실험의 경우 초기 모델의 정확도 87.22%를 95.59%로 향상시켰다. 또한 실험을 통해 결정 트리 학습 방법에 비해 통계적 결정 그래프 학습 방법이 더욱 효과적임을 알 수 있었다.

  • PDF

The Construction Methodology of a Rule-based Expert System using CART-based Decision Tree Method (CART 알고리즘 기반의 의사결정트리 기법을 이용한 규칙기반 전문가 시스템 구축 방법론)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.849-854
    • /
    • 2011
  • To minimize the spreading effect from the events of the system, a rule-based expert system is very effective. However, because the events of the large-scale system are diverse and the load condition is very variable, it is very difficult to construct the rule-based expert system. To solve this problem, this paper studies a methodology which constructs a rule-based expert system by applying a CART(Classification and Regression Trees) algorithm based decision tree determination method to event case examples.

The Site Selection for Public Facilities in Using The Multi-Criteria Evaluation Method in Geographic Information System- A Case Study of the Waste Incinerator (공공시설물 입지선정에 있어서 다기준평가기법의 활용에 관한 연구-쓰레기 소각장을 사례로 하여)

  • 이희연
    • Journal of the Korean Geographical Society
    • /
    • v.35 no.3
    • /
    • pp.437-454
    • /
    • 2000
  • 본 연구의 목적은 공공시설물이지만 기피시설물이기 때문에 상당한 갈등을 일으키고 있는 쓰레기 소각장 입지를 선정하는데 있어서 GIS를 기반으로 다기준평가기법을 활용하여 보다 객관적이고 과학적이면서도 유연적인 후보입지를 추출하려는 것이다. 본 연구에서는 다양한 입지요인들을 표준화한 후 각 요인들이 갖는 상대적 중요도를 반영하는 가중치를 산출하고 의사결정 규칙을 적용하여 적합도 수준에 따른 후보입자들을 추출하였다. 또한 민감도 분석을 통하여 각 평가기준들에 대해 상이한 가중치를 부여하고 의사결정 규칙방법을 달리 적용하였을 경우 후보입지들의 적합도 순위에 어떠한 영향을 미치는가를 파악하였다. 이러한 방법을 통해 분석된 결과는 의사결정자들이 입지를 결정하는데 필요한 정보를 활용될 수 있으며, 따라서 GIS를 기반으로 하는 다기준 평가기법은 공간적 의사결정 지원시스템으로서으 GIS기능을 증대시킨다고 볼 수 있다.

  • PDF

Reduction of Approximate Rule based on Probabilistic Rough sets (확률적 러프 집합에 기반한 근사 규칙의 간결화)

  • Kwon, Eun-Ah;Kim, Hong-Gi
    • The KIPS Transactions:PartD
    • /
    • v.8D no.3
    • /
    • pp.203-210
    • /
    • 2001
  • These days data is being collected and accumulated in a wide variety of fields. Stored data itself is to be an information system which helps us to make decisions. An information system includes many kinds of necessary and unnecessary attribute. So many algorithms have been developed for finding useful patterns from the data and reasoning approximately new objects. We are interested in the simple and understandable rules that can represent useful patterns. In this paper we propose an algorithm which can reduce the information in the system to a minimum, based on a probabilistic rough set theory. The proposed algorithm uses a value that tolerates accuracy of classification. The tolerant value helps minimizing the necessary attribute which is needed to reason a new object by reducing conditional attributes. It has the advantage that it reduces the time of generalizing rules. We experiment a proposed algorithm with the IRIS data and Wisconsin Breast Cancer data. The experiment results show that this algorithm retrieves a small reduct, and minimizes the size of the rule under the tolerant classification rate.

  • PDF

The Optimal Reduction of Fuzzy Rules using a Rough Set (러프집합을 이용한 퍼지 규칙의 효율적인 감축)

  • No, Eun-Yeong;Jeong, Hwan-Muk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.261-264
    • /
    • 2007
  • 퍼지 추론은 애매한 지식을 효과적으로 처리할 수 있는 장점이 있다. 그러나 규칙의 연관속성은 규칙을 과다하게 생성하기 때문에 유용하고 중요한 규칙을 결정하는데 여러 가지 문제점이었다. 본 논문에서는 퍼지 규칙에서 규칙간의 상관성을 고려하여 불필요한 속성을 제거하고, 퍼지규칙의 상대농도를 이용하여 추론결과의 정확성을 유지하면서 규칙의 수를 최소화 하는 방법을 제안한다. 제안한 방법의 타당성을 검증하기 위하여 기존의 규칙 감축 방법에 따른 출론 결과와 비교 검증하였다.

  • PDF