Decision fusion in wireless sensor networks under non-Gaussian noise channels is studied. To consider the tail behavior noise distributions, we use a exponentially-tailed distribution as a wide class of noise distributions. Based on a canonical parallel fusion model with fading and noise channels, the likelihood ratio(LR) based fusion rule is considered as an optimal fusion rule under Neyman-Pearson criterion. With both high and low signal-to-noise ratio (SNR) approximation to the optimal rule, we obtain several suboptimal fusion rules. and we propose a simple fusion rule that provides robust detection performance with a minimum prior information, Performance evaluation for several fusion rules is peformed through simulation. Simulation results show the robustness of the Proposed simple fusion rule.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.183-192
/
2002
본 논문에서는 구축함의 대공방어분야에 대한 업무를 IDEF0기능 모델링 방법을 통해 체계적으로 분석하였으며 미국방성의 산하기구인 DARPA에서 연구한 CPOF(Command Post Of Future) 의사결정 모델을 토대로 구축함의 대공방어분야에서 상황평가 단계에 대한 의사결정 과정을 심도 깊게 분석하였다. 또한 구축함의 대공방어분야에서 분석된 업무수행 절차를 토대로 상황평가 단계에서 의사결정과정에 따른 필요한 규칙집합을 식별하고 규칙집합 내부의 규칙들을 효과적으로 추출하기 위하여 규칙집합들에 대한 정의, 규칙에 입력되는 데이터, 규칙집합의 결과값, 규칙집합간의 상호관계를 분석하였다. 이러한 도메인 지식개발은 장차 해군 전투체계 지원용 전문가시스템을 개발하는데 중요한 기회기반이 될 것이다.
Proceedings of the Korea Inteligent Information System Society Conference
/
1999.10a
/
pp.89-98
/
1999
현대전에서는 첩보와 정보의 수집 및 분석 능력과 이를 이용한 효과적인 의사결정을 전쟁의 승패를 좌우할 수 있는 중요한 요소이다. 이를 위하여 첩보와 정보 수집 및 분석을 자동화하기 위한 전장정보분석 자동화에 관한 연구가 국방과학연구소 주관으로 실시되고 있다. 따라서 이와 연계된 의사결정 자동화에 관한 연구가 필요하게 되었다. 본 논문에서는 이러한 요구에 부응할 수 있는 전장정보를 활용한 의사결정의 중요한 한 분야인 화력분야를 자동화하기 위한 전문가시스템 지식베이스의 분석 및 설계에 관한 연구이다. 화력분야 의사결정은 아군의 가용 화력자산을 효과적으로 운용하는 화력분배가 중심이 되며 이 업무는 화력분배에 전문적인 지식을 가진 장교에 의해 실시된다. 이러한 화력분배 자동화를 위하여 본 논문에서는 화력분배와 관련된 현행 업무 관련 지식을 획득 및 분석하고 이를 바탕으로 규칙집합을 추출하였으며 규칙 집합들간의 상호관계, 입력요소, 출력결과 등을 식별하였다. 또한 규칙집합별로 세부적인 규칙을 도출하였고 객체지향기법을 이용한 클래스, 객체, 속성들을 식별하여 에디터를 이용해 지식베이스를 구축할 수 있도록 설계를 완료하였다.
This paper proposes a method of disambiguating the senses of words using decision lists, which consists of rules with confidence values. The rule of decision list is composed of a boolean function(=precondition) and a class(=sense). Decision lists classify the instance using the rule with the highest confidence value that is matched with it. Previous work disambiguated the senses using single feature decision lists, whose boolean function was composed of only one feature. However, this approach can be affected more severely by data sparseness problem and preprocessing errors. Hence, we propose multiple feature decision lists that have the boolean function consisting of more than one feature in order to identify the senses of words. Experiments are performed with 1 sense tagged corpus in Korean and 5 sense tagged corpus in English. The experimental results show that multiple feature decision lists are more effective than single feature decision lists in disambiguating senses.
Journal of the Korean Data and Information Science Society
/
v.21
no.2
/
pp.263-270
/
2010
Data mining is the process of sorting through large amounts of data and picking out useful information. An important goal of data mining is to discover, define and determine the relationship between several variables. Association rule mining is an important research topic in data mining. An association rule technique finds the relation among each items in massive volume database. Association rule technique consists of two steps: finding frequent itemsets and then extracting interesting rules from the frequent itemsets. Some interestingness measures have been developed in association rule mining. Interestingness measures are useful in that it shows the causes for pruning uninteresting rules statistically or logically. This paper explores some problems for two interestingness measures, confidence and net confidence, and then propose a decision process for right association rule generation using these interestingness measures.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.123-129
/
2001
지금까지 한국어 품사 부착을 위해 다양한 모델이 제안되었고 95% 이상의 높은 정확도를 보여주고 있다. 그러나 4-5%의 오류는 실제 응용 분야에서 많은 문제를 야기시킬 수 있다. 이러한 오류를 최소화하기 위해서는 오류를 분석하고 이를 수정할 수 있는 규칙들을 학습하여 재사용하는 방범이 효과적이다. 오류 수정 규칙을 학습하기 위한 기존의 방법들은 수동학습 방법과 자동 학습 방법으로 나눌 수 있다 수동 학습 방법은 많은 비용이 요구되는 단점이 있다. 자동 학습 방법의 경우 모두 변형규칙 기반 접근 방법을 사용하였는데 어휘 정보를 고려할 경우 탐색 공간과 규칙 적용 시간이 매우 크다는 단점이 있다. 따라서 본 논문에서는 초기 모델에 대한 오류 수정 규칙을 효율적으로 학습하기 위한 새로운 방법으로 결정 트리 학습 방법을 확장한 통계적 결정 그래프 학습 방법을 제안한다. 제안된 방법으로 두 가지 실험을 수행하였다. 초기 모델의 정확도가 높고 말뭉치의 크기가 작은 첫 번째 실험의 경우 초기 모델의 정확도 95.48%를 97.37%까지 향상시킬 수 있었다. 초기 모델의 정확도가 낮고 말뭉치 크기가 큰 두 번째 실험의 경우 초기 모델의 정확도 87.22%를 95.59%로 향상시켰다. 또한 실험을 통해 결정 트리 학습 방법에 비해 통계적 결정 그래프 학습 방법이 더욱 효과적임을 알 수 있었다.
The Journal of the Korea institute of electronic communication sciences
/
v.6
no.6
/
pp.849-854
/
2011
To minimize the spreading effect from the events of the system, a rule-based expert system is very effective. However, because the events of the large-scale system are diverse and the load condition is very variable, it is very difficult to construct the rule-based expert system. To solve this problem, this paper studies a methodology which constructs a rule-based expert system by applying a CART(Classification and Regression Trees) algorithm based decision tree determination method to event case examples.
본 연구의 목적은 공공시설물이지만 기피시설물이기 때문에 상당한 갈등을 일으키고 있는 쓰레기 소각장 입지를 선정하는데 있어서 GIS를 기반으로 다기준평가기법을 활용하여 보다 객관적이고 과학적이면서도 유연적인 후보입지를 추출하려는 것이다. 본 연구에서는 다양한 입지요인들을 표준화한 후 각 요인들이 갖는 상대적 중요도를 반영하는 가중치를 산출하고 의사결정 규칙을 적용하여 적합도 수준에 따른 후보입자들을 추출하였다. 또한 민감도 분석을 통하여 각 평가기준들에 대해 상이한 가중치를 부여하고 의사결정 규칙방법을 달리 적용하였을 경우 후보입지들의 적합도 순위에 어떠한 영향을 미치는가를 파악하였다. 이러한 방법을 통해 분석된 결과는 의사결정자들이 입지를 결정하는데 필요한 정보를 활용될 수 있으며, 따라서 GIS를 기반으로 하는 다기준 평가기법은 공간적 의사결정 지원시스템으로서으 GIS기능을 증대시킨다고 볼 수 있다.
These days data is being collected and accumulated in a wide variety of fields. Stored data itself is to be an information system which helps us to make decisions. An information system includes many kinds of necessary and unnecessary attribute. So many algorithms have been developed for finding useful patterns from the data and reasoning approximately new objects. We are interested in the simple and understandable rules that can represent useful patterns. In this paper we propose an algorithm which can reduce the information in the system to a minimum, based on a probabilistic rough set theory. The proposed algorithm uses a value that tolerates accuracy of classification. The tolerant value helps minimizing the necessary attribute which is needed to reason a new object by reducing conditional attributes. It has the advantage that it reduces the time of generalizing rules. We experiment a proposed algorithm with the IRIS data and Wisconsin Breast Cancer data. The experiment results show that this algorithm retrieves a small reduct, and minimizes the size of the rule under the tolerant classification rate.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.261-264
/
2007
퍼지 추론은 애매한 지식을 효과적으로 처리할 수 있는 장점이 있다. 그러나 규칙의 연관속성은 규칙을 과다하게 생성하기 때문에 유용하고 중요한 규칙을 결정하는데 여러 가지 문제점이었다. 본 논문에서는 퍼지 규칙에서 규칙간의 상관성을 고려하여 불필요한 속성을 제거하고, 퍼지규칙의 상대농도를 이용하여 추론결과의 정확성을 유지하면서 규칙의 수를 최소화 하는 방법을 제안한다. 제안한 방법의 타당성을 검증하기 위하여 기존의 규칙 감축 방법에 따른 출론 결과와 비교 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.