• Title/Summary/Keyword: 격틀집합

Search Result 5, Processing Time 0.028 seconds

The Classification of Korean Adjectives using Case Frame Set (격틀집합을 이용한 한국어 형용사 유형 분류)

  • Jeon, Ji-Eun;Choe, Jae-Woong
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.254-261
    • /
    • 2006
  • 형용사 분류에 격틀이 중요한 역할을 한다는 주장은 여러 연구에서 제기된 바 있다. 본 연구에서는 격틀이 의미 분류에 기여하는 바를 보다 체계적으로 검토하기 위하여 '격틀집합'을 활용한다. 격틀집합은 한 개의 어휘가 취할 수 있는 격틀의 집합을 말한다. 격틀집합에 근거하여 형용사를 분류할 경우, 의미적으로 연관성이 높은 그룹으로 나뉠 수 있다는 가설을 바탕으로 이러한 가설의 타당성을 검증하고 이를 입증하는 것이 본 연구의 목적이다. 아울러 본 연구에서는 그러한 가설을 검증하기 위한 구체적인 방법론을 제시한다. 격틀집합정보는 세종전자사전에 들어있는 어휘별 격틀정보를 추출하여 활용한다. 본 연구 결과 도출된 총 101개의 격틀집합 중에서 한 개의 격틀만을 갖는 유형과 어휘목록이 5개미만인 유형을 제외한 12개의 격틀집합이 주요 분석 대상으로, 본 연구에서는 그 중에서 6개를 자세히 분석한다. 격틀집합별 어휘들을 살펴보면 의미적 연관성이 파악되지 않는 어휘들도 일부 포함되어 있기는 하나, 대부분은 의미적으로 상관관계가 있음을 확인할 수 있었다 이와 같은 방법론을 통해 국어 형용사 전체의 유형, 더 나아가 국어 용언을 분류하는데 본 연구의 가설과 방법론이 활용될 수 있다.

  • PDF

Study on Automatic Construction and Evaluation method of Caseframe (격틀 자동구축과 격틀평가 방법에 관한 연구)

  • Choi, Yong-Seok;Lee, Ju-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.272-279
    • /
    • 1999
  • 격틀이란 동사에 대해 필요한 격들과 그 격에 알맞은 단어집합으로 이루어져 있는 것으로 명사와 동사의 의미적 호응을 표현한다. 격틀은 자연언어처리분야에서 주요한 정보로 사용할 수 있다. 의미구분이라든지 번역에서 한국어 생성, 정보검색에서 중요정보 추출 등 잘 구성한 질 높은 격틀은 여러 연구의 질을 높여줄 수 있다. 따라서, 질 좋은 격틀을 구성하기 위한 여러 노력들이 현재 이루어지고 있다. 본 논문에서는 기계 가독형 사전과 말모듬을 이용해서 자동으로 격틀을 구성한다. 자동구성 방법으로 먼저 기계가독형 사전을 이용해서 상위개념 정보를 가지는 분류정보를 구성한다. 말모듬과 사전의 예문들을 형태소 분석한 후에 각각의 예문들을 분류정보를 이용하여 최상위 개념으로 바꾼다. 그리고, 말모듬과 사전의 예문에서 나온 정보들을 통합하므로 해서 자동으로 격틀을 구성한다. 자동으로 격틀을 구성한 후에 수동으로 구성한 격틀과 비교해 본다. 비교하기 위한 평가방법에 대해서 논의한다.

  • PDF

Automatic Mapping of Korean Wordnet "KorLex" to Semantic Classes of Sejong Dictionary (세종 의미 부류와 KorLex 명사 어휘 의미망 자동 맵핑)

  • So, Gilja;Yoon, Aesun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.92-96
    • /
    • 2009
  • 인간이 가진 개념을 지식베이스화하려는 시도 중 하나로 의미망이 구축되고 있다. 한국어를 대상으로 한 어휘 의미망 중 프린스턴 대학의 WordNet을 대역한 KorLex는 1,2단계에서 한국어 어휘의미의 특성을 반영하여 개념 및 의미구조를 재구조화하고 있다. 그러나 현재 KorLex의 동의어 집합을 구성하는 어휘 의미에는 논항정보를 따로 구성할 수 없었다. 본 연구는 세종 전자 사전 격틀정보내의 선택제약조건(selectional restriction)으로 사용되고 있는 의미 부류와 KorLex의 명사 어휘 의미망을 자동 맵핑하는 방안을 제안함으로써 KorLex에서 세종 전자 사전 격틀정보를 활용할 수 있는 가능성을 제공한다.

  • PDF

Dictionary Making for Disambiguation (동사의 애매성 해소를 위한 구문의미사전의 구축)

  • Song, Young-Bin;Chae, Young-Soog;Park, Yong-Il;Lee, Jun-Min;Seol, Kah-Young;Hwang, Hye-Ri;Han, Na-Ri;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.280-287
    • /
    • 1999
  • 동사의 애매성이란 동일 동사 내부에서 공기하는 명사의 상충적 의미의 분포에 의해 발생한다. 이는 동일한 동사라 하더라도 명사의 상위개념, 흑은 개개의 명사에 따라 동사의 의미가 달라진다는 것을 의미한다. 동사의 애매성 해소를 위한 구문의미사전은 동사가 갖는 격틀과 논항에 오는 명사의 단어 집합에 의해 구성된다. 기계용 사전에서의 동사의 애매성이란 명사의 상위개념, 혹은 개개의 명사에 관한 정보가 결여될 때 나타난다. 지금까지의 구문의미사전은 개개의 동사가 갖는 격틀을 중심으로 논합명사의 예만을 제시하거나 명사의 상위개념을 기술하는 형식으로 구성되어 왔다. 이는 형식적인 패턴의 추출에는 유용하지만 대역어 선정을 위한 구문의미사전과 같은 섬세한 의미 정보를 필요로 하는 사전에서는 거의 효력을 발휘하지를 못한다. 다국어를 전제로 한 동사 대역어의 추출을 목적으로 하는 구문의미사전에서는 동사와 공기하는 논항명사의 철저한 추출과 검증에 의한 명사목록의 구축이 애매성 해소와 정확한 동사 대역어의 선정에 전제가 된다. 본 논문에서는 KAIST Corpus를 기반으로 현재 구축 중인 한국어 구문의미사전의 개요와 구축 과정에서 얻어진 방법론을 소개한다. 이 연구개발 결과는 과학기술부 KISTEP 특정연구개발과제 핵심소프트웨어개발 국어정보처리기술개발 중 "대용량 국어정보 심층 처리 및 품질 관리 기술 개발"의 지원을 받았다.

  • PDF

Korean Space Event Relation Extraction Using Case-frame (격틀 정보를 이용한 한국어 공간 사건 관계 추출)

  • Kwak, Sujeong;Kim, Bogyum;Park, Yongmin;Lee, Jae Sung
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.798-801
    • /
    • 2014
  • 문서에서 공간 개체와 사건을 찾아내고, 이들 간의 위상적 관계나 의미적 관계를 찾아내는 것을 공간정보 추출이라고 한다. 본 논문에서는 언어분석 결과와 세종사전을 활용해 자연언어 문서에서 동작(motion) 사건 관계 중심의 공간 정보를 추출하는 규칙 기반 시스템을 제안하였다. 수동으로 구축한 20문장의 평가 집합에 대해 사건 관계 추출은 27.45%의 F-measure 성능을 보였다. 공간보다 비교적 많은 연구가 진행된 시간 관계 추출에 대한 최신 연구의 성능이 30~35% 수준[1]인 것을 고려하여 볼 때, 본 연구는 공간 사건 관계 추출의 기초 연구로 의미가 있다.