• Title/Summary/Keyword: 격자 트랜스버설 결합 적응필터

Search Result 2, Processing Time 0.014 seconds

A Lattice Transversal Joint Adaptive Filter with Fixed Reflection Coefficients (고정 반사계수를 갖는 격자 트랜스버설 결합 적응필터)

  • Yoo, Jae-Ha
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • We present a lattice transversal joint (LTJ) adaptive filter with fixed reflection coefficients to achieve fast convergence with low complexity. The reflection coefficients of the filter are given by the statistics of speech signals, and the proposed order of the lattice predictor is one. Experimental results confirm that as compared to the adaptive transversal filter, the proposed adaptive filter achieves fast convergence with a negligible increase in complexity. The proposed adaptive filter converges around six times faster than the adaptive transversal filter in case of the band-limited voiced signal from the ITU-T G.168 standard.

A New Analysis and a Reduction Method of Computational Complexity for the Lattice Transversal Joint (LTJ) Adaptive Filter (격자 트랜스버설 결합 (LTJ) 적응필터의 새로운 해석과 계산량 감소 방법)

  • 유재하
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.438-445
    • /
    • 2002
  • In this paper, the necessity of the filter coefficients compensation for the lattice transversal joint (LTJ) adaptive filter was explained in general and with ease by analyzing it with respect to the time-varying transform domain adaptive filter. And also the reduction method of computational complexity for filter coefficients compensation was proposed using the property that speech signal is stationary during a short time period and its effectiveness was verified through experiments using artificial and real speech signals. The proposed adaptive filter reduces the computational complexity for filter coefficients compensation by 95%, and when the filter is applied to the acoustic echo canceller with 1000 taps, the total complexity is reduced by 82%.