• Title/Summary/Keyword: 격자형 토폴로지

Search Result 3, Processing Time 0.019 seconds

Topology-aware Packet Size and Forward Rate for Energy Efficiency and Reliability in Dynamic Wireless Body Area Networks (동적 무선 인체 통신망의 에너지 효율과 신뢰성을 위한 토폴로지 인식 기반 패킷 크기 및 포워딩 비율 결정 방법)

  • Nguyen-Xuan, Sam;Kim, Dongwan;An, Sunshin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • The sensors attached on/in a person are moved since human body frequency changes their activity, therefore in wireless body area networks, nodal mobility and non-line-of-sight condition will impact on performance of networks such as energy efficiency and reliable communication. We then proposed schemes which study on forwarding decisions against frequent change of topology and channel conditions to increase reliable connections and improve energy efficiency. In this work, we control the size of packets, forwarding rate based on ratio of input links and output links at each node. We also robust the network topology by extending the peer to peer IEEE 802.15.4-based. The adaptive topology from chain-based to grid-based can optimal our schemes. The simulation shows that these approaches are not only extending network lifetime to 48.2 percent but also increase around 6.08 percent the packet delivery ratio. The "hot spots" problem is also resolved with this approach.

Robustness Evaluation of Tactical Network based on SNA

  • Park, Ji-Hye;Yoon, Soung-woong;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.205-213
    • /
    • 2019
  • Network robustness is one of the most important characteristics needed as the network. Over the military tactical communication network, robustness is a key function for maintaining attack phase constantly. Tactical Information Communication Network, called TICN, has mixed characteristics of lattice- and tree-type network topology, which looks somewhat weak in the viewpoint of network robustness. In this paper, we search articulation points and bridges in a current Tactical Information Communication Network using graph theory. To improve the weak points empirically searched, we try to add links to create the concrete network and then observe the change of network-based verification values through diminishing nodes. With these themes, we evaluate the generated networks through SNA techniques. Experimental results show that the generated networks' robustness is improved compared with current network structure.

A Priority Based Multipath Routing Mechanism in the Tactical Backbone Network (전술 백본망에서 우선순위를 고려한 다중 경로 라우팅 방안)

  • Kim, Yongsin;Shin, Sang-heon;Kim, Younghan
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.1057-1064
    • /
    • 2015
  • The tactical network is system based on wireless networking technologies that ties together surveillance reconnaissance systems, precision strike systems and command and control systems. Several alternative paths exist in the network because it is connected as a grid to improve its survivability. In addition, the network topology changes frequently as forces and combatants change their network access points while conducting operations. However, most Internet routing standards have been designed for use in stable backbone networks. Therefore, tactical networks may exhibit a deterioration in performance when these standards are implemented. In this paper, we propose Priority based Multi-Path routing with Local Optimization(PMPLO) for a tactical backbone network. The PMPLO separately manages the global and local metrics. The global metric propagates to other routers through the use of a routing protocol, and it is used for a multi-path configuration that is guaranteed to be loop free. The local metric reflects the link utilization that is used to find an alternate path when congestion occurs, and it is managed internally only within each router. It also produces traffic that has a high priority privilege when choosing the optimal path. Finally, we conducted a simulation to verify that the PMPLO can effectively distribute the user traffic among available routers.