• Title/Summary/Keyword: 격자기반 장기 수문 모델

Search Result 2, Processing Time 0.021 seconds

Evaluation of Land Use Change Impact on Stream Drying Phenomena Using a Grid-Based Continuous Hydrologic Model (격자기반 수문 모델을 이용한 토지이용변화에 따른 하천건천화 영향 평가)

  • Jung, Chung Gil;Lee, Yong Gwan;Jang, Sun Sook;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.102-102
    • /
    • 2015
  • 최근 중소규모 하천은 하천수 및 하천변 지하수 이용의 증가와 토지이용변화 등 유역 내 수문인자의 특성 변화로 인해 하천의 건천화가 점증하고 있어 하천 환경이 악화되고 있는 실정이다. 본 연구에서는 격자기반의 분포형 장기수문 모델(PGA-CC)을 이용하여 과거 수십년동안 토지이용변화에 따른 하천 건천화 영향을 평가하였다. 실제 건천화가 진행되고 있는 삽교천 상류유역($358.8km^2$)을 선정하였고 토지이용변화분석을 위해 과거 1975년 토지이용도(Past), 현재 2008년 토지이용도(Present)를 구축하였다. 각각의 토지이용 항목 중 변화율이 가장 높은 도시비율은 과거 토지이용도에서는 2.6 %였으며 현재 토지이용도에서는 11.3 %로 8.7 %가 증가하였다. 모델 검보정은 최근 7년(2005-2011)동안 최종유역출구지점에서 유출 검보정을 실시하였다. 그 결과 NSE (Nash-Sutcliffe model efficiency)은 평균 0.71로 유출량의 모의값과 실측값이 유효한 것으로 나타났다. 건천화를 평가하기 위해 시험유역에서의 5 WPs (Watching Points)를 선정하여 과거 및 현재 토지이용조건을 모의하고 유황분석을 통한 갈수 변화량 분석을 실시하였다. 건천화 빈도분석을 위해 GEV (Generalized Extreme Value) 갈수빈도분석을 실시하여 과거 토지이용 모의결과 산정된 평균 갈수량($m^3/s$) 이하로 낮아지는 유출량 일수를 계산하였다. 최종유역출구에서 과거 및 현재 토지이용도에서 모의된 평균갈수량은 각각 $3.27m^3/s$$3.11m^3/s$로 나타났다. GEV 갈수빈도분석결과 과거 토지이용조건에서의 평균갈수량은 $3.20m^3/s$(재현기간 2.33년)으로 나타났다. 도시증가에 따른 인구증가는 지하수 사용량에 증가를 가져온다. 이는, 건천화에 영향을 미치며 본 연구에서는 지하수이용량 자료(1998-2011)를 이용하여 도시면적과 지하수이용량의 선형회귀분석을 실시하여 과거 22년 지하수 사용량을 예측하였다. 그 결과 지하수사용량 증가는 토지이용변화와 복합적으로 상류유역에 하천의 변화를 가속시키는 것으로 나타냈다.

  • PDF

Development of long-term daily high-resolution gridded meteorological data based on deep learning (딥러닝에 기반한 우리나라 장기간 일 단위 고해상도 격자형 기상자료 생산)

  • Yookyung Jeong;Kyuhyun Byu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.198-198
    • /
    • 2023
  • 유역 내 수자원 계획을 효율적으로 수립하기 위해서는 장기간에 걸친 수문 모델링 뿐만 아니라 미래 기후 시나리오에 따른 수문학적 기후변화 영향 분석도 중요하다. 이를 위해서는 관측 값에 기반한 고품질 및 고해상도 격자형 기상자료 생산이 필수적이다. 하지만, 우리나라는 종관기상관측시스템(ASOS)과 방재기상관측시스템(AWS)으로 이루어진 고밀도 관측 네트워크가 2000년 이후부터 이용 가능했기에 장기간 격자형 기상자료가 부족하다. 이를 보완하고자 본 연구는 가정적인 상황에 기반하여 만약 2000년 이전에도 현재와 동일한 고밀도 관측 네트워크가 존재했다면 산출 가능했을 장기간 일 단위 고해상도 격자형 기상자료를 생산하는 것을 목표로 한다. 구체적으로, 2000년을 기준으로 최근과 과거 기간의 격자형 기상자료를 딥러닝 알고리즘으로 모델링하여 과거 기간을 대상으로 기상자료(일 단위 기온, 강수량)의 공간적 변동성 및 특성을 재구성한다. 격자형 기상자료의 생산을 위해 우리나라의 고도에 기반하여 기상 인자들의 영향을 정량화 하는 보간법인 K-PRISM을 적용하여 고밀도 및 저밀도 관측 네트워크로 두 가지 격자형 기상자료를 생산한다. 생산한 격자형 기상자료 중 저밀도 관측 네트워크의 자료를 입력 자료로, 고밀도 관측 네트워크의 자료를 출력 자료로 선정하여 각 격자점에 대해 Long-Short Term Memory(LSTM) 알고리즘을 개발한다. 이 때, 멀티 그래픽 처리장치(GPU)에 기반한 병렬 처리를 통해 비용 효율적인 계산이 가능하도록 한다. 최종적으로 1973년부터 1999년까지의 저밀도 관측 네트워크의 격자형 기상자료를 입력 자료로 하여 해당 기간에 대한 고밀도 관측 네트워크의 격자형 기상자료를 생산한다. 개발된 대부분의 예측 모델 결과가 0.9 이상의 NSE 값을 나타낸다. 따라서, 본 연구에서 개발된 모델은 고품질의 장기간 기상자료를 효율적으로 정확도 높게 산출하며, 이는 향후 장기간 기후 추세 및 변동 분석에 중요 자료로 활용 가능하다.

  • PDF