• 제목/요약/키워드: 게이트형 순환 신경망

검색결과 2건 처리시간 0.015초

다채널 오디오 특징값 및 게이트형 순환 신경망을 사용한 다성 사운드 이벤트 검출 (Polyphonic sound event detection using multi-channel audio features and gated recurrent neural networks)

  • 고상선;조혜승;김형국
    • 한국음향학회지
    • /
    • 제36권4호
    • /
    • pp.267-272
    • /
    • 2017
  • 본 논문에서는 다채널 오디오 특징값을 게이트형 순환 신경망(Gated Recurrent Neural Networks, GRNN)에 적용한 효과적인 다성 사운드 이벤트 검출 방식을 제안한다. 실생활의 사운드는 여러 사운드 이벤트가 겹쳐있는 다성사운드로, 기존의 단일 채널 오디오 특징값으로는 다성 사운드에서 개별적인 이벤트의 검출이 어렵다는 한계가 있다. 이에 본 논문에서는 다채널 오디오 신호를 기반으로 추출된 특징값을 사용하여 다성 사운드 이벤트 검출에 적용하였다. 또한 본 논문에서는 현재 순환 신경망에서 가장 높은 성능을 보이는 장단기 기억 신경망(Long Short Term Memory, LSTM) 보다 간단한 GRNN을 분류에 적용하여 다성 사운드 이벤트 검출의 성능을 더욱 향상시키고자 하였다. 실험결과는 본 논문에서 제안한 방식이 기존의 방식보다 성능이 더 뛰어나다는 것을 보인다.

GRU 기법을 활용한 서울시 공공자전거 수요예측 모델 개발 (Development of Demand Forecasting Model for Public Bicycles in Seoul Using GRU)

  • 이승운;곽기영
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.1-25
    • /
    • 2022
  • 2020년 1월 국내에 첫 코로나19 확진자가 발생한 후 버스와 지하철 같은 대중교통이 아닌 공공자전거와 같은 개인형 이동수단에 대한 관심이 증가하였다. 서울시에서 운영하는 공공자전거인 '따릉이'에 대한 수요 역시 증가하였다. 본 연구에서는 서울시 공공자전거의 최근 3년간(2019~2021) 시간대별 대여이력을 바탕으로 게이트 순환 유닛(GRU, Gated Recurrent Unit)의 수요예측 모델을 제시하였다. 본 연구에서 제시하는 GRU 방법의 유용성은 서울시 영등포구 여의도에 위치한 여의나루 1번 출구의 대여이력을 바탕으로 검증하였다. 특히, 동일한 조건에서 다중선형회귀 모델 및 순환신경망 모델들과 이를 비교 분석하였다. 아울러, 모델 개발시 기상요소 이외에 서울시 생활인구를 변수로 활용하여 이에 대한 검증도 함께 진행하였다. 모델의 성능지표로는 MAE와 RMSE를 사용하였고, 이를 통해 본 연구에서 제안하는 GRU 모델의 유용성을 제시하였다. 분석결과 제안한 GRU 모델이 전통적인 기법인 다중선형회귀 모델과 최근 각광받고 있는 LSTM 모델 및 Conv-LSTM 모델보다 예측 정확도가 높게 나타났다. 또한 분석에 소요되는 시간도 GRU 모델이 LSTM 모델, Conv-LSTM 모델보다 짧았다. 본 연구를 통해 서울시 공공자전거의 수요예측을 보다 빠르고 정확하게 하여 향후 재배치 문제 등의 해결에 도움이 될 수 있을 것이다.