• Title/Summary/Keyword: 게이트형 순환 신경망

Search Result 2, Processing Time 0.02 seconds

Polyphonic sound event detection using multi-channel audio features and gated recurrent neural networks (다채널 오디오 특징값 및 게이트형 순환 신경망을 사용한 다성 사운드 이벤트 검출)

  • Ko, Sang-Sun;Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.267-272
    • /
    • 2017
  • In this paper, we propose an effective method of applying multichannel-audio feature values to GRNNs (Gated Recurrent Neural Networks) in polyphonic sound event detection. Real life sounds are often overlapped with each other, so that it is difficult to distinguish them by using a mono-channel audio features. In the proposed method, we tried to improve the performance of polyphonic sound event detection by using multi-channel audio features. In addition, we also tried to improve the performance of polyphonic sound event detection by applying a gated recurrent neural network which is simpler than LSTM (Long Short Term Memory), which shows the highest performance among the current recurrent neural networks. The experimental results show that the proposed method achieves better sound event detection performance than other existing methods.

Development of Demand Forecasting Model for Public Bicycles in Seoul Using GRU (GRU 기법을 활용한 서울시 공공자전거 수요예측 모델 개발)

  • Lee, Seung-Woon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.1-25
    • /
    • 2022
  • After the first Covid-19 confirmed case occurred in Korea in January 2020, interest in personal transportation such as public bicycles not public transportation such as buses and subways, increased. The demand for 'Ddareungi', a public bicycle operated by the Seoul Metropolitan Government, has also increased. In this study, a demand prediction model of a GRU(Gated Recurrent Unit) was presented based on the rental history of public bicycles by time zone(2019~2021) in Seoul. The usefulness of the GRU method presented in this study was verified based on the rental history of Around Exit 1 of Yeouido, Yeongdengpo-gu, Seoul. In particular, it was compared and analyzed with multiple linear regression models and recurrent neural network models under the same conditions. In addition, when developing the model, in addition to weather factors, the Seoul living population was used as a variable and verified. MAE and RMSE were used as performance indicators for the model, and through this, the usefulness of the GRU model proposed in this study was presented. As a result of this study, the proposed GRU model showed higher prediction accuracy than the traditional multi-linear regression model and the LSTM model and Conv-LSTM model, which have recently been in the spotlight. Also the GRU model was faster than the LSTM model and the Conv-LSTM model. Through this study, it will be possible to help solve the problem of relocation in the future by predicting the demand for public bicycles in Seoul more quickly and accurately.