• Title/Summary/Keyword: 게놈크기

Search Result 44, Processing Time 0.025 seconds

Analysis of Red Pepper (Capsicum annuum) Genome (고추의 게놈 분석)

  • 안정선
    • Journal of Plant Biology
    • /
    • v.39 no.1
    • /
    • pp.57-61
    • /
    • 1996
  • The genome of red pepper was investigated by thermal denaturation, reassociation kinetics and measurement of nuclear volume for its base composition, spectrum of kinetic components and genome size. Base composition was estimated to be 37% (G+C) based on melting temperature. The reassociation of 300 nt fragments analyzed by hydroxyapatite chromatography revealed the presence of three kinetic components differing in fraction of genome, kinetic complexity and number of copies as follows; 4.8% (fast) with $5.6{\times}10^{4}\;bp$ and 10,754, 26% (intermediate) with $1.9{\times}10^{6}\;bp$ and 177, and 65% (slow) with $8.48{\times}10^{8}\;bp$ and 1. These measurements demonstrate that the genome of red pepper has a 1C DNA content of $1.25{\times}10^{9}\;bp$, which is about 33% of $4.05{\times}10^{9}\;bp$ calculated from nuclear volume of $62.4\;\mu\textrm{m}^3/1C$..

  • PDF

A New Component Software for Hierarchical Visualization for Whole Genomes (전 유전체 단계적 가시화를 위한 새로운 컴포넌트 소프트웨어)

  • Chung, Woo-Keun;Cho, Chi-Young;Cho, Hwan-Gue
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.988-991
    • /
    • 2009
  • 게놈 데이터의 지속적인 증가로 인해 생물정보학에서 유전체 정보를 체계적으로 저장하고 열람하는 효과적이고 효율적인 시스템을 확립하는 것은 중요한 일이다. 잘 알려진 게놈 정보의 계층적 구조처럼 우리는 게놈의 내부 구조를 연구하기 위한 우수한 툴도 필요하다. 게놈 연구에 있어서 한 가지 문제는 유전체 정보는 너무 거대해서 표준적인 정보 처리를 이용하는 간단한 툴로는 작업하기 어려운 점이다. 예를 들어 특정 게놈 데이터 크기는 100메가 바이트를 넘는다. 추가적으로 유전자, promoters, retro-elements(HERV), operons, exon-introns와 같은 많은 게놈 요소들이 있다. 전통적으로 생물학자 들은 게놈 연구를 위해 툴을 아무거나 사용하지 않고, 보통 그들의 연구에 좋은 툴을 채택하려 노력했다. 게놈 연구에서 기본적이고 주시할만한 단계는 다른 종과 유전체 요소를 비교하기 위해 위치를 인식할 수 있도록 하나의 화면에 모든 게놈 데이터를 시각화하는 것이다. 생물학자에게 툴의 개발은 많은 시간이 걸리고 시행착오를 겪기 쉬운 일이다. 이 논문에서 우리는 전체 게놈 중 어떤 게놈 요소를 시각화하는 컴포넌트 웨어의 셋을 제안한다. 그리하여 실험을 목적으로 생물학자를 만나서 우리의 셋을 이용하여 컴포넌트를 조합하여 소프트웨어를 만드는 것은 비교적 간단한 작업이다. 이 실험에서 우리는 HERV와 연동되는 게놈 요소를 보여주는 툴을 어떻게 우리의 컴포넌트 웨어를 간단히 조합하여 구축하는지를 보여주겠다.

Structural Characteristics of Expression Module of Unidentified Genes from Metagenome (메타게놈 유래 미규명 유전자의 발현에 관련된 특성분석)

  • Park, Seung-Hye;Jeong, Young-Su;Kim, Won-Ho;Kim, Geun-Joong;Hur, Byung-Ki
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2006
  • The exploitation of metagenome, the access to the natural extant of enormous potential resources, is the way for elucidating the functions of organism in environmental communities, for genomic analyses of uncultured microorganism, and also for the recovery of entirely novel natural products from microbial communities. The major breakthrough in metagenomics is opened by the construction of libraries with total DNAs directly isolated from environmental samples and screening of these libraries by activity and sequence-based approaches. Screening with activity-based approach is presumed as a plausible route for finding new catabolic genes under designed conditions without any prior sequence information. The main limitation of these approaches, however, is the very low positive hits in a single round of screening because transcription, translation and appropriate folding are not always possible in E. coli, a typical surrogate host. Thus, to obtain information about these obstacles, we studied the genetic organization of individual URF's(unidentified open reading frame from metagenome sequenced and deposited in GenBank), especially on the expression factors such as codon usage, promoter region and ribosome binding site(rbs), based on DNA sequence analyses using bioinformatics tools. And then we also investigated the above-mentioned properties for 4100 ORFs(Open Reading Frames) of E. coli K-12 generally used as a host cell for the screening of noble genes from metagenome. Finally, we analyzed the differences between the properties of URFs of metagenome and ORFs of E. coli. Information derived from these comparative metagenomic analyses can provide some specific features or environmental blueprint available to screen a novel biocatalyst efficiently.

글로벌리포트3/ 게임속에서 구현된 성

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.5 s.120
    • /
    • pp.158-164
    • /
    • 2003
  • 컴퓨터 게임속의 새롭고 독특한 주인공을 만들어 내는 게임 제작을 위해 캐릭터의 '유전자 설계'를 해야 한다. 이렇게 탄생하는 캐릭터들은 性을 비롯해, 모양, 크기, 색깔 등 모든 특성을 포함하는 게놈(Genome)을 갖고 있는 것이다. 게임 캐릭터의 유전자 설계를 통해 불가능한 것은 없다. 돌연변이, 수명의 결정, 후천적인 캐릭터 계승, 그리고 학습된 행동까지 지정할 수 있는 것이다. 컴퓨터 게임에서는 좋아하는 어떤 것이다 디자인 할 수 있다.

  • PDF

Characterization of Rice black-streaked dwarf virus in Maize (옥수수에 발생하는 벼검은줄오갈병의 유전자 비교)

  • Lee, Bong-Choon;Yoon, Young-Nam;Hong, Sung-Jun;Hong, Yeon-Kyu;Hwang, Jae-Bok;Song, Sek-Bo;Kang, Hwang-Won;Lee, Key-Woon
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.223-225
    • /
    • 2008
  • This study was carried out to identify the Rice black-streaked dwarf virus that infected maize plants collected from Gochang-gun in Jeollabukdo in 2005. The genomic dsRNA from infected plants was extracted and the genome pattern was analyzed by polyacrylamide gel electrophoresis. Results of the electrophoresis revealed the already known to-segment genome and the difference of mobility was confirmed in isolates by collected areas. The RBSDV was identified from the result of RT-PCR using the template of extracted dsRNA and specific primer. The results of S10 cloned to pGEM-T vector and the conducted in sequence analysis consisted of 1,801nt and 559aa. This was of the same size as the RBSDV S10 identified in rice, and the change was confirmed in 18 base and displayed homology of 99%.

Workflow for Building a Draft Genome Assembly using Public-domain Tools: Toxocara canis as a Case Study (개 회충 게놈 응용 사례에서 공개용 분석 툴을 사용한 드래프트 게놈 어셈블리 생성)

  • Won, JungIm;Kong, JinHwa;Huh, Sun;Yoon, JeeHee
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.513-518
    • /
    • 2014
  • It has become possible for small scale laboratories to interpret large scale genomic DNA, thanks to the reduction of the sequencing cost by the development of next generation sequencing (NGS). De novo assembly is a method which creates a putative original sequence by reconstructing reads without using a reference sequence. There have been various study results on de novo assembly, however, it is still difficult to get the desired results even by using the same assembly procedures and the analysis tools which were suggested in the studies reported. This is mainly because there are no specific guidelines for the assembly procedures or know-hows for the use of such analysis tools. In this study, to resolve these problems, we introduce steps to finding whole genome of an unknown DNA via NGS technology and de novo assembly, while providing the pros and cons of the various analysis tools used in each step. We used 350Mbp of Toxocara canis DNA as an application case for the detailed explanations of each stated step. We also extend our works for prediction of protein-coding genes and their functions from the draft genome sequence by comparing its homology with reference sequences of other nematodes.

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (인간 게놈의 Copy Number Variation과 유전자 질환)

  • Oh, Jung-Hwan;Nishimura, Ichiro
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • Genetic variation in the human genome occurs on various levels; from the single nucleotide polymorphism to large, microscopically visible chromosome anomalies. It can be present in many forms, including variable number of tandem repeat (VNTRs; e.g., mini- and microsatellites), presence/absence of transposable elements (e.g., Alu elements), single nucleotide polymorphisms, and structural alterations (e.g., copy number variation, segmental duplication, inversion, translocation). Until recently SNPs were thought to be the main source of genetic and phenotypic human variation. However, the use of methods such as array comparative genomic hybridization (array CGH) and fluorescence in situ hybridization (FISH) have revealed the presence of copy number variations(CNVs) ranging from kilobases (kb) to megabases (Mb) in the human genome. There is great interest in the possibility that CNVs playa role in the etiology of common disease such as HIV-1/AIDS, diabetes, autoimmune disease, heart disease and cancer. The discovery of widespread copy number variation in human provides insights into genetic variability among populations and provides a foundation for studies of the contribution of CNVs to evolution and disease.

NEWS&TOPICS 해외

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • no.11 s.414
    • /
    • pp.8-10
    • /
    • 2003
  • 동물원 야생동물 이상행동 관찰돼/ 동전 크기 칩에 인간유전자 집적/ 흉터 없는 초고속 상처치료 물질 발견/ 글리백, 알츠하이머 병에도 효과/ CERN, 12개국 참여 차세대 컴퓨터망 구축/ 적색육, 인체에 해로운 면역반응 유발/ 스트레스 비만과 각종 성인병 유발/ '푸들'종 개 게놈지도 작성/ 줄기세포, 난자에서도 추출 가능/ 첫 육지식물 4억7천500만년 전 출현/ 고대 그리스數체계는 이집트에서 차용

  • PDF

Isolation and characterization of an Enterococcus faecalis bacteriophage (Enterococcus faecalis 특이적 박테리오파지의 분리와 특성규명)

  • Kang, Hee-Young;Kim, Shukho;Kim, Jungmin
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Enterococcus faecalis is a Gram-positive and facultative anaerobic bacterium that causes many hospital-acquired infections. Novel E. faecalis specific bacteriophage (phage) ECP3 that had been isolated from thirty-four environmental samples and characterized phenotypically and genotypically. ECP3 phage belongs to the family Myoviridae with contractile tail and lysed E. faecalis specifically but other bacteria including Enterococcus faecium. The genome was double-stranded linear DNA and its size was 145,518 bp comprising of 220 open reading frames. The GC content was 35.9%. The genome sequence showed 97% identity in 90% coverage region with Myoviridae phage PhiEF24C. ECP3 is the first E. faecalis-specific Myoviridae phage isolated in Korea which can be a promising antimicrobial agent against E. faecalis infections.